6,041 research outputs found

    Circular-Polarization-Dependent Study of Microwave-Induced Conductivity Oscillations in a Two-Dimensional Electron Gas on Liquid Helium

    Get PDF
    The polarization dependence of photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional (2D) electron system formed on the surface of liquid helium is studied using a setup in which a circular polarization of opposite directions can be produced. Contrary to the results of similar investigations reported for semiconductor 2D electron systems, for electrons on liquid helium, a strong dependence of the amplitude of magnetoconductivity oscillations on the direction of circular polarization is observed. This observation is in accordance with theoretical models based on photon-assisted scattering and, therefore, it solves a critical issue in the dispute over the origin of microwave-induced conductivity oscillations.Comment: 5 pages, 4 figure

    Dephasing of qubits by transverse low-frequency noise

    Full text link
    We analyze the dissipative dynamics of a two-level quantum system subject to low-frequency, e.g. 1/f noise, motivated by recent experiments with superconducting quantum circuits. We show that the effect of transverse linear coupling of the system to low-frequency noise is equivalent to that of quadratic longitudinal coupling. We further find the decay law of quantum coherent oscillations under the influence of both low- and high-frequency fluctuations, in particular, for the case of comparable rates of relaxation and pure dephasing

    On Possible Measurement of Gravitational Interaction Parameters on Board a Satellite

    Full text link
    The recently suggested SEE (Satellite Energy Exchange) method of measuring the gravitational constant GG, possible equivalence principle violation (measured by the E\"{o}tv\"{o}s parameter η\eta) and the hypothetic 5th force parameters α\alpha and λ\lambda on board a drag-free Earth's satellite is discussed and further developed. Various particle trajectories near a heavy ball are numerically simulated. Some basic sources of error are analysed. The GG measurement procedure is modelled by noise insertion to a ``true'' trajectory. It is concluded that the present knowledge of G,αG, \alpha (for λ1\lambda \geq 1 m) and η\eta can be improved by at least two orders of magnitude.Comment: (only two misprints on title page) 7 page

    On the nonlinear NMR and magnon BEC in antiferromagnetic materials with coupled electron-nuclear spin precession

    Get PDF
    We present a new study of nonlinear NMR and Bose-Einstein Condensation (BEC) of nuclear spin waves in antiferromagnetic MnCO3 with coupled electron and nuclear spins. In particular, we show that the observed behaviour of NMR signals strongly contradicts the conventional description of paramagnetic ensembles of noninteracting spins based on the phenomenological Bloch equations. We present a new theoretical description of the coupled electron-nuclear spin precession, which takes into account an indirect relaxation of nuclear spins via the electron subsystem. We show that the magnitude of the nuclear magnetization is conserved for arbitrary large excitation powers, which is drastically different from the conventional heating scenario derived from the Bloch equations. This provides strong evidence that the coherent precession of macroscopic nuclear magnetization observed experimentally can be identified with BEC of nuclear spin waves with k=0.Comment: 12 pages, 8 figure

    Search for f1(1285)π+ππ0f_1(1285) \to \pi^+\pi^-\pi^0 decay with VES detector

    Full text link
    The isospin violating decay f1(1285)π+ππ0f_1(1285)\to\pi^+\pi^-\pi^0 has been studied at VES facility. This study is based at the statistics acquired in πBe\pi^- Be interactions at 27, 36.6 and 41 GeV/c in diffractive reaction πN(f1π)N\pi^- N \to (f_1 \pi^-) N. The f1(1285)π+ππ0f_1(1285) \to \pi^+\pi^-\pi^0 decay is observed. The ratio of decay probabilities BR(f1(1285)π+ππ0)BR(f_1(1285) \to \pi^+\pi^-\pi^0) to BR(f1(1285)ηπ+π)BR(ηγγ)BR(f_1(1285) \to \eta \pi^+\pi^-) \cdot BR(\eta \to \gamma\gamma) is 1.4\sim\:1.4%.Comment: 10 pages, 8 figures, presented at XII Conference on Hadron Spectroscop

    Bistability and Hysteresis of Intersubband Absorption in Strongly Interacting Electrons on Liquid Helium

    Full text link
    We study nonlinear inter-subband microwave absorption of electrons bound to the liquid helium surface. Already for a comparatively low radiation intensity, resonant absorption due to transitions between the two lowest subbands is accompanied by electron overheating. The overheating results in a significant population of higher subbands. The Coulomb interaction between electrons causes a shift of the resonant frequency, which depends on the population of the excited states and thus on the electron temperature TeT_e. The latter is determined experimentally from the electron photoconductivity. The experimentally established relationship between the frequency shift and TeT_e is in reasonable agreement with the theory. The dependence of the shift on the radiation intensity introduces nonlinearity into the rate of the inter-subband absorption resulting in bistability and hysteresis of the resonant response. The hysteresis of the response explains the behavior in the regime of frequency modulation, which we observe for electrons on liquid 3^3He and which was previously seen for electrons on liquid 4^4He
    corecore