39 research outputs found

    Late Paleocene Flora of the Northern Alaska Peninsula: The Role of Transberingian Plant Migrations and Climatic Change

    Get PDF
    For the first time, the Late Sagwon Flora is described from the upper beds of the Prince Creek Formation (Upper Paleocene) at the Sagavanirktok River (northern Alaska Peninsula). The flora is dominated by the angiosperm Tiliaephyllum brooksense Moiseeva et Herman sp. nov. and conifer Metasequoia occidentalis (Newb.) Chaney. The Late Sagwon Flora is most similar to the Danian or Danian-Selandian flora from the middle part of the Upper Tsagayan Subformation (Amur Region) and lower part of the Wuyun Formation (Heilongjiang Province, China). This similarity allows us to hypothesize that the genus Tiliaephyllum, which dominated in the Late Tsagayan Flora, migrated via the Bering Land Bridge from southern paleolatitudes of the Far East to high latitudes of the Arctic Pacific, due to the progressively warming climate of the Paleocene. Additional new angiosperm species are described from the Late Sagwon Flora: Archeampelos mullii Moiseeva et Herman sp. nov., Tiliaephyllum brooksense Moiseeva et Herman sp. nov., and Dicotylophyllum sagwonicum Moiseeva et Herman sp. nov

    Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons

    Get PDF
    BACKGROUND: Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. CONCLUSIONS/SIGNIFICANCE: Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species
    corecore