348 research outputs found

    A modulated shear to entropy ratio

    Get PDF
    We study correlation functions in an equilibrated spatially modulated phase of Einstein-Maxwell two-derivative gravity. We find that the ratio of the appropriate low frequency limit of the stress-stress two point function to the entropy density is modulated. The conductivity, the stress-current and current-stress correlation functions are also modulated. At temperatures close to the phase transition we obtain analytic expressions for some of the correlation functions.Comment: 38 pages, 2 figures; v2: added reference, minor correctio

    A software approach to defeating side channels in last-level caches

    Full text link
    We present a software approach to mitigate access-driven side-channel attacks that leverage last-level caches (LLCs) shared across cores to leak information between security domains (e.g., tenants in a cloud). Our approach dynamically manages physical memory pages shared between security domains to disable sharing of LLC lines, thus preventing "Flush-Reload" side channels via LLCs. It also manages cacheability of memory pages to thwart cross-tenant "Prime-Probe" attacks in LLCs. We have implemented our approach as a memory management subsystem called CacheBar within the Linux kernel to intervene on such side channels across container boundaries, as containers are a common method for enforcing tenant isolation in Platform-as-a-Service (PaaS) clouds. Through formal verification, principled analysis, and empirical evaluation, we show that CacheBar achieves strong security with small performance overheads for PaaS workloads

    Dimensional reduction from entanglement in Minkowski space

    Full text link
    Using a quantum field theoretic setting, we present evidence for dimensional reduction of any sub-volume of Minkowksi space. First, we show that correlation functions of a class of operators restricted to a sub-volume of D-dimensional Minkowski space scale as its surface area. A simple example of such area scaling is provided by the energy fluctuations of a free massless quantum field in its vacuum state. This is reminiscent of area scaling of entanglement entropy but applies to quantum expectation values in a pure state, rather than to statistical averages over a mixed state. We then show, in a specific case, that fluctuations in the bulk have a lower-dimensional representation in terms of a boundary theory at high temperature.Comment: 9 pages, changes to presentation, some content corrections, version published in JHE

    Enstrophy from symmetry

    Get PDF
    We study symmetry principles associated with the approximately conserved enstrophy current, responsible for the inverse energy cascade in non relativistic 2+1 dimensional turbulence. We do so by identifying the accidental symmetry associated with enstrophy current conservation in a recently realized effective action principle for hydrodynamics. Our analysis deals with both relativistic and non relativistic effective actions and their associated symmetries

    Entanglement and Nonunitary Evolution

    Get PDF
    We consider a collapsing relativistic spherical shell for a free quantum field. Once the center of the wavefunction of the shell passes a certain radius R, the degrees of freedom inside R are traced over. We show that an observer outside this region will determine that the evolution of the system is nonunitary. We argue that this phenomenon is generic to entangled systems, and discuss a possible relation to black hole physics.Comment: 14 pages, 1 figure; Added a clarification regarding the relation with black hole physic

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201

    A Paradoxical Isopotentiality: A Spatially Uniform Noise Spectrum in Neocortical Pyramidal Cells

    Get PDF
    Membrane ion channels and synapses are among the most important computational elements of nerve cells. Both have stochastic components that are reflected in random fluctuations of the membrane potential. We measured the spectral characteristics of membrane voltage noise in vitro at the soma and the apical dendrite of layer 4/5 (L4/5) neocortical neurons of rats near the resting potential. We found a remarkable similarity between the voltage noise power spectra at the soma and the dendrites, despite a marked difference in their respective input impedances. At both sites, the noise levels and the input impedance are voltage dependent; in the soma, the noise level increased from σ = 0.33 ± 0.28 mV at 10 mV hyperpolarization from the resting potential to σ = 0.59 ± 0.3 at a depolarization of 10 mV. At the dendrite, the noise increased from σ = 0.34 ± 0.28 to σ = 0.56 ± 0.30 mV, respectively. TTX reduced both the input impedance and the voltage noise, and eliminated their voltage dependence at both locations. We describe a detailed compartmental model of a L4/5 neuron with simplified electrical properties that successfully reproduces the difference in input impedance between dendrites and soma and demonstrates that spatially uniform conductance-base noise sources leads to an apparent isopotential structure which exhibits a uniform power spectra of voltage noise at all locations. We speculate that a homogeneous distribution of noise sources insures that variability in synaptic amplitude as well as timing of action potentials is location invariant

    Geometric entropy, area, and strong subadditivity

    Full text link
    The trace over the degrees of freedom located in a subset of the space transforms the vacuum state into a density matrix with non zero entropy. This geometric entropy is believed to be deeply related to the entropy of black holes. Indeed, previous calculations in the context of quantum field theory, where the result is actually ultraviolet divergent, have shown that the geometric entropy is proportional to the area for a very special type of subsets. In this work we show that the area law follows in general from simple considerations based on quantum mechanics and relativity. An essential ingredient of our approach is the strong subadditive property of the quantum mechanical entropy.Comment: Published versio
    corecore