1,127 research outputs found
On the similarity of dust flows in the inner coma of comets
The atmosphere of a comet is formed by the sublimation, due to solar illumination, of its volatile component and the dust particles ejected from its nucleus and entrained by the gas flow. Contemporary dusty-gas coma models take into account numerous physical processes occurring in the coma and a complex geometry of the nucleus. For the description of the dusty-gas flow in the coma, such models introduce a large number of governing parameters characterizing physical properties and processes. The relative role of these processes is not easy to ascribe therefore a relevant inter-comparison of model results becomes difficult. The present work introduces a set of universal, dimensionless parameters, which characterize the dust motion in the inner cometary coma. This approach allows one to: (i) reduce the number of parameters for analysis; (ii) reveal dust flows similarities; (iii) rescale the available numerical solutions. The present work demonstrates application of this approach to a realistic coma model. Description of dust motion with dimensionless parameters allows us to make a parametric study for a broad range of conditions and to find simple analytic approximations (via a polynomial function) of the numerical results suitable for rough estimations of dust density in the coma
Charge relaxation resistance in the Coulomb blockade problem
We study the dissipation in a system consisting of a small metallic island
coupled to a gate electrode and to a massive reservoir via single tunneling
junction. The dissipation of energy is caused by a slowly oscillating gate
voltage. We compute it in the regimes of weak and strong Coulomb blockade. We
focus on the regime of not very low temperatures when electron coherence can be
neglected but quantum fluctuations of charge are strong due to Coulomb
interaction. The answers assume a particularly transparent form while expressed
in terms of specially chosen physical observables. We discovered that the
dissipation rate is given by a universal expression in both limiting cases.Comment: 21 pages, 12 figure
Pharmacoeconomic analysis of use the oral hypoglycemic agents in patients with type 2 diabetes mellitus according to a real clinical practice
We aimed to conduct cost-utility analysis of two different regimens of the oral hypoglycemic therapy in 2 type diabetes mellitus (DM2). Methods. In the whole, 229 patients with DM2, receiving vildagliptin add-on to metformin (group 1) or sulphonylureas add-on to metformin (group 2) were enrolled in the study. Cost-utility ratio (CUR) was identified as a ratio of difference in total costs of treatment in the groups and difference in QALY in corresponding groups. The overall costs included direct costs of treatment as well as costs for treating of DM2 complications (severe hypoglycemia) and the costs related to the loss of GDP due to severe hypoglycemia events. Health utility value was evaluated for each patient on the basis of SF-6D questionnaire. Pharmacoeconomic expediency of treatment regimen was estimated by means of comparing the CUR and wiliness-to-pay ratio (WTP) for Russian Federation (RF). Results. The health utility value was higher in group 1 as compared to group 2: 0,757 vs 0,70 (p>0,05). The overall costs for treating one patient in group 1 during a year were 28 637,34 rubles, in group 2 - 10 231,55 rubles. CUR amounted 328 674,82 rubles and it was 4.4 times lower than upper border of WTP ratio in RF (1 457 400 rub.). Conclusion. The innovation treatment regimen with vildagliptin add-on to metformin is beneficial and may be considered as economically reasonable alternative to traditional treatment regimen with sulphonylureas add-on to metformin for DM2 patients in RF
Ultrabright room-temperature single-photon emission from nanodiamond nitrogen-vacancy centers with sub-nanosecond excited-state lifetime
Ultrafast emission rates obtained from quantum emitters coupled to plasmonic
nanoantennas have recently opened fundamentally new possibilities in quantum
information and sensing applications. Plasmonic nanoantennas greatly improve
the brightness of quantum emitters by dramatically shortening their
fluorescence lifetimes. Gap plasmonic nanocavities that support strongly
confined modes are of particular interest for such applications. We demonstrate
single-photon emission from nitrogen-vacancy (NV) centers in nanodiamonds
coupled to nanosized gap plasmonic cavities with internal mode volumes about 10
000 times smaller than the cubic vacuum wavelength. The resulting structures
features sub-nanosecond NV excited-state lifetimes and detected photon rates up
to 50 million counts per second. Analysis of the fluorescence saturation allows
the extraction of the multi-order excitation rate enhancement provided by the
nanoantenna. Efficiency analysis shows that the NV center is producing up to
0.25 billion photons per second in the far-field
Blue laser cooling transitions in Tm I
We have studied possible candidates for laser cooling transitions in
Tm in the spectral region 410 -- 420 nm. By means of saturation
absorption spectroscopy we have measured the hyperfine structure and rates of
two nearly closed cycling transitions from the ground state
to upper states
at
410.6 nm and
at
420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and
48(6) ns respectively. Decay rates from these levels to neighboring
opposite-parity levels are evaluated by means of Hartree-Fock calculations. We
conclude, that the strong transition at 410.6 nm has an optical leak rate of
less then and can be used for efficient laser cooling of
Tm from a thermal atomic beam. The hyperfine structure of two other
even-parity levels which can be excited from the ground state at 409.5 nm and
418.9 nm is also measured by the same technique. In addition we give a
calculated value of s for the rate of magnetic-dipole transition
at 1.14 m between the fine structure levels
of the ground state which can be
considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure
A high precision, compact electromechanical ground rotation sensor
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1×10^(−11)m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7×10^(−9)rad/√Hz at 10 mHz and 6.4×10^(−10)rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality
Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer
A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems
Reliability of resting-state EEG modulation by continuous and intermittent theta burst stimulation of the primary motor cortex:a sham-controlled study
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation designed to induce changes of cortical excitability that outlast the period of TBS application. In this study, we explored the effects of continuous TBS (cTBS) and intermittent TBS (iTBS) versus sham TBS stimulation, applied to the left primary motor cortex, on modulation of resting state electroencephalography (rsEEG) power. We first conducted hypothesis-driven region-of-interest (ROI) analyses examining changes in alpha (8-12 Hz) and beta (13-21 Hz) bands over the left and right motor cortex. Additionally, we performed data-driven whole-brain analyses across a wide range of frequencies (1-50 Hz) and all electrodes. Finally, we assessed the reliability of TBS effects across two sessions approximately 1 month apart. None of the protocols produced significant group-level effects in the ROI. Whole-brain analysis revealed that cTBS significantly enhanced relative power between 19 and 43 Hz over multiple sites in both hemispheres. However, these results were not reliable across visits. There were no significant differences between EEG modulation by active and sham TBS protocols. Between-visit reliability of TBS-induced neuromodulatory effects was generally low-to-moderate. We discuss confounding factors and potential approaches for improving the reliability of TBS-induced rsEEG modulation.</p
Genomic encyclopedia of sugar utilization pathways in the Shewanella genus
<p>Abstract</p> <p>Background</p> <p>Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.</p> <p>Results</p> <p>We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the <it>Shewanella </it>genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across <it>Shewanella </it>species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.</p> <p>Comparison of the reconstructed catabolic pathways with <it>E. coli </it>identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks.</p> <p>Conclusions</p> <p>The reconstructed sugar catabolome in <it>Shewanella </it>spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.</p
- …