13 research outputs found
Almost-Euclidean subspaces of via tensor products: a simple approach to randomness reduction
It has been known since 1970's that the N-dimensional -space contains
nearly Euclidean subspaces whose dimension is . However, proofs of
existence of such subspaces were probabilistic, hence non-constructive, which
made the results not-quite-suitable for subsequently discovered applications to
high-dimensional nearest neighbor search, error-correcting codes over the
reals, compressive sensing and other computational problems. In this paper we
present a "low-tech" scheme which, for any , allows to exhibit nearly
Euclidean -dimensional subspaces of while using only
random bits. Our results extend and complement (particularly) recent work
by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1)
simplicity (we use only tensor products) and (2) yielding "almost Euclidean"
subspaces with arbitrarily small distortions.Comment: 11 pages; title change, abstract and references added, other minor
change
Precision Tests of the Standard Model
30 páginas, 11 figuras, 11 tablas.-- Comunicación presentada al 25º Winter Meeting on Fundamental Physics celebrado del 3 al 8 de MArzo de 1997 en Formigal (España).Precision measurements of electroweak observables provide stringent tests of the Standard Model structure and an accurate determination of its parameters. An overview of the present experimental status is presented.This work has been supported in part
by CICYT (Spain) under grant No. AEN-96-1718.Peer reviewe
Strategic Learning for Active, Adaptive, and Autonomous Cyber Defense
The increasing instances of advanced attacks call for a new defense paradigm
that is active, autonomous, and adaptive, named as the \texttt{`3A'} defense
paradigm. This chapter introduces three defense schemes that actively interact
with attackers to increase the attack cost and gather threat information, i.e.,
defensive deception for detection and counter-deception, feedback-driven Moving
Target Defense (MTD), and adaptive honeypot engagement. Due to the cyber
deception, external noise, and the absent knowledge of the other players'
behaviors and goals, these schemes possess three progressive levels of
information restrictions, i.e., from the parameter uncertainty, the payoff
uncertainty, to the environmental uncertainty. To estimate the unknown and
reduce uncertainty, we adopt three different strategic learning schemes that
fit the associated information restrictions. All three learning schemes share
the same feedback structure of sensation, estimation, and actions so that the
most rewarding policies get reinforced and converge to the optimal ones in
autonomous and adaptive fashions. This work aims to shed lights on proactive
defense strategies, lay a solid foundation for strategic learning under
incomplete information, and quantify the tradeoff between the security and
costs.Comment: arXiv admin note: text overlap with arXiv:1906.1218
The Existence and Uniqueness of Nash Equilibrium Point in an m-player Game “Shoot Later, Shoot First!”
Duel of m players, Nash equilibrium,
Ambush frequency should increase over time during optimal predator search for prey
We advance and apply the mathematical theory of search games to model the problem faced by a predator searching for prey. Two search modes are available: ambush and cruising search. Some species can adopt either mode, with their choice at a given time traditionally explained in terms of varying habitat and physiological conditions. We present an additional explanation of the observed predator alternation between these search modes, which is based on the dynamical nature of the search game they are playing: the possibility of ambush decreases the propensity of the prey to frequently change locations and thereby renders it more susceptible to the systematic cruising search portion of the strategy. This heuristic explanation is supported by showing that in a new idealized search game where the predator is allowed to ambush or search at any time, and the prey can change locations at intermittent times, optimal predator play requires an alternation (or mixture) over time of ambush and cruise search. Thus, our game is an extension of the well-studied 'Princess and Monster'search game. Search games are zero sum games, where the pay-off is the capture time and neither the Searcher nor the Hider knows the location of the other. We are able to determine the optimal mixture of the search modes when the predator uses a mixture which is constant over time, and also to determine how the mode mixture changes over time when dynamic strategies are allowed (the ambush probability increases over time). In particular, we establish the 'square root law of search predation': the optimal proportion of active search equals the square root of the fraction of the region that has not yet been explored. © 2011 The Royal Society