1,387 research outputs found

    A Mean-field Approach for an Intercarrier Interference Canceller for OFDM

    Full text link
    The similarity of the mathematical description of random-field spin systems to orthogonal frequency-division multiplexing (OFDM) scheme for wireless communication is exploited in an intercarrier-interference (ICI) canceller used in the demodulation of OFDM. The translational symmetry in the Fourier domain generically concentrates the major contribution of ICI from each subcarrier in the subcarrier's neighborhood. This observation in conjunction with mean field approach leads to a development of an ICI canceller whose necessary cost of computation scales linearly with respect to the number of subcarriers. It is also shown that the dynamics of the mean-field canceller are well captured by a discrete map of a single macroscopic variable, without taking the spatial and time correlations of estimated variables into account.Comment: 7pages, 3figure

    Beeping a Maximal Independent Set

    Full text link
    We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192

    Node Labels in Local Decision

    Get PDF
    The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment - in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013). In this work we give study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oracles ff that, for any given nn, provide a multiset f(n)f(n) of nn labels; then the adversary assigns the labels to the nn nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers. Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Conditional association between melanism and personality in Israeli barn owls

    Get PDF
    Capsule Boldness defines the extent to which animals are willing to take risks in the presence of a predator. Late, but not early, in the breeding season, Israeli nestling Barn Owls displaying larger black feather spots were more docile, feigned death longer and had a lower breathing rate when handled than smaller-spotted nestlings. Larger-spotted breeding females were less docile if heavy but more more docile if light. The covariation between personality (boldness vs. timid) and melanin-based colouration is therefore conditional on environmental factors

    A gas emitted by Neurospora crassa

    Get PDF
    We investigated whether gases other than carbon dioxide are produced by N. crassa. A peak corresponding to ethylene has been detected using gas chromatography. Mass spectroscopy, however, indicated that the gas produced might be carbon monoxide which, surprisingly, migrated with the same chromatographic retention time as ethylene. Our results emphasize the need for caution when interpreting results based solely on gas chromatographic data

    An exact solution for 2+1 dimensional critical collapse

    Get PDF
    We find an exact solution in closed form for the critical collapse of a scalar field with cosmological constant in 2+1 dimensions. This solution agrees with the numerical simulation done by Pretorius and Choptuik of this system.Comment: 5 pages, 5 figures, Revtex. New comparison of analytic and numerical solutions beyond the past light cone of the singularity added. Two new references added. Error in equation (21) correcte

    Supersymmetric spacetimes in 2+1 adS-supergravity models

    Get PDF
    We find a class of (2+1)-dimensional spacetimes admitting Killing spinors appropriate to (2,0) adS-supergravity. The vacuum spacetimes include anti-de Sitter (adS) space and charged extreme black holes, but there are many others, including spacetimes of arbitrarily large negative energy that have only conical singularities, and the spacetimes of fractionally charged point particles. The non-vacuum spacetimes are those of self-gravitating solitons obtained by coupling (2,0) adS supergravity to sigma-model matter. We show, subject to a condition on the matter currents (satisfied by the sigma model), and a conjecture concerning global obstructions to the existence of certain types of spinor fields, that the mass of each supersymmetric spacetime saturates a classical bound, in terms of the angular momentum and charge, on the total energy of arbitrary field configurations with the same boundary conditions, although these bounds may be violated quantum mechanically.Comment: 47 pages, phyzzx.tex, no figures

    Hawking Radiation and Unitary evolution

    Get PDF
    We find a family of exact solutions to the semi-classical equations (including back-reaction) of two-dimensional dilaton gravity, describing infalling null matter that becomes outgoing and returns to infinity without forming a black hole. When a black hole almost forms, the radiation reaching infinity in advance of the original outgoing null matter has the properties of Hawking radiation. The radiation reaching infinity after the null matter consists of a brief burst of negative energy that preserves unitarity and transfers information faster than the theoretical bound for positive energy.Comment: LaTex file + uuencoded ps version including 4 figure
    corecore