1,712 research outputs found

    Precise mass-dependent QED contributions to leptonic g-2 at order alpha^2 and alpha^3

    Full text link
    Improved values for the two- and three-loop mass-dependent QED contributions to the anomalous magnetic moments of the electron, muon, and tau lepton are presented. The Standard Model prediction for the electron (g-2) is compared with its most precise recent measurement, providing a value of the fine-structure constant in agreement with a recently published determination. For the tau lepton, differences with previously published results are found and discussed. An updated value of the fine-structure constant is presented in "Note added after publication."Comment: 6 pages, 1 figure. v2: New determination of alpha presented (based on the recent electron g-2 measurement). v3: New formulae added in Sec.IIB. v4: Updated value of alpha presente

    Explaining Jupiter's magnetic field and equatorial jet dynamics

    Full text link
    Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the one year nominal mission duration.Comment: 7 pages, 4 figures, accepted for publication in Geophysical Research Letter

    From solar-like to anti-solar differential rotation in cool stars

    Full text link
    Stellar differential rotation can be separated into two main regimes: solar-like when the equator rotates faster than the poles and anti-solar when the polar regions rotate faster than the equator. We investigate the transition between these two regimes with 3-D numerical simulations of rotating spherical shells. We conduct a systematic parameter study which also includes models from different research groups. We find that the direction of the differential rotation is governed by the contribution of the Coriolis force in the force balance, independently of the model setup (presence of a magnetic field, thickness of the convective layer, density stratification). Rapidly-rotating cases with a small Rossby number yield solar-like differential rotation, while weakly-rotating models sustain anti-solar differential rotation. Close to the transition, the two kinds of differential rotation are two possible bistable states. This study provides theoretical support for the existence of anti-solar differential rotation in cool stars with large Rossby numbers.Comment: 5 pages, 6 figures, accepted for publication in MNRA

    What controls the large-scale magnetic fields of M dwarfs?

    Full text link
    Observations of active M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. We detail the analogy between some anelastic dynamo simulations and spectropolarimetric observations of 23 M stars. In numerical models, the relative contribution of inertia and Coriolis force in the global force balance -estimated by the so-called local Rossby number- is known to have a strong impact on the magnetic field geometry. We discuss the relevance of this parameter in setting the large-scale magnetic field of M dwarfs.Comment: 4 pages, 3 figures, conference proceeding, IAUS 302 'Magnetic Fields Throughout the Stellar Evolution', (26-30 Aug 2013, Biarritz, France

    What controls the magnetic geometry of M dwarfs?

    Full text link
    Context: observations of rapidly rotating M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. In dynamo models, the relative importance of inertia in the force balance -- quantified by the local Rossby number -- is known to have a strong impact on the magnetic field geometry. Aims: we aim to assess the relevance of the local Rossby number in controlling the large-scale magnetic field geometry of M dwarfs. Methods: we explore the similarities between anelastic dynamo models in spherical shells and observations of active M-dwarfs, focusing on field geometries derived from spectropolarimetric studies. To do so, we construct observation-based quantities aimed to reflect the diagnostic parameters employed in numerical models. Results: the transition between dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is tentatively attributed to a Rossby number threshold. We interpret late M dwarfs magnetism to result from a dynamo bistability occurring at low Rossby number. By analogy with numerical models, we expect different amplitudes of differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&

    A Bose-Einstein condensate interferometer with macroscopic arm separation

    Full text link
    A Michelson interferometer using Bose-Einstein condensates is demonstrated with coherence times of up to 44 ms and arm separations up to 0.18 mm. This arm separation is larger than that observed for any previous atom interferometer. The device uses atoms weakly confined in a magnetic guide and the atomic motion is controlled using Bragg interactions with an off-resonant standing wave laser beam.Comment: 4 pages, 3 figure

    A compact and robust diode laser system for atom interferometry on a sounding rocket

    Full text link
    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase

    Semiclassical limits to the linewidth of an atom laser

    Get PDF
    We investigate the linewidth of a quasi-continuous atom laser within a semiclassical framework. In the high flux regime, the lasing mode can exhibit a number of undesirable features such as density fluctuations. We show that the output therefore has a complicated structure that can be somewhat simplified using Raman outcoupling methods and energy-momentum selection rules. In the weak outcoupling limit, we find that the linewidth of an atom laser is instantaneously Fourier limited, but, due to the energy `chirp' associated with the draining of a condensate, the long-term linewidth of an atom laser is equivalent to the chemical potential of the condensate source. We show that correctly sweeping the outcoupling frequency can recover the Fourier-limited linewidth.Comment: 9 Figure
    • …
    corecore