155 research outputs found

    A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The induction of tumor cell invasion is an important step in tumor progression. Due to the cost and slowness of <it>in-vivo </it>invasion assays, there is need for quantitative <it>in-vitro </it>invasion assays that mimic as closely as possible the tumor environment and in which conditions can be rigorously controlled.</p> <p>Methods</p> <p>We have established a novel asymmetric 3D in-vitro invasion assay by embedding a monolayer of tumor cells between two layers of collagen. The cells were then allowed to invade the upper and lower layers of collagen. To visualize invading cells the gels were sectioned perpendicular to the monolayer so that after seeding the monolayer appears as a thin line precisely defining the origin of invasion. The number of invading tumor cells, their proliferation rate, the distance they traverse and the direction of invasion could then be determined quantitatively.</p> <p>Results</p> <p>The assay was used to compare the invasive properties of several tumor cell types and the results compare well with those obtained by previously described assays. Lysyl-oxidase like protein-2 (Loxl2) is a potent inducer of invasiveness. Using our assay we show for the first time that inhibition of endogenous Loxl2 expression in several types of tumor cells strongly inhibits their invasiveness. We also took advantage of the asymmetric nature of the assay in order to show that fibronectin enhances the invasiveness of breast cancer cells more potently than laminin. The asymmetric properties of the assay were also used to demonstrate that soluble factors derived from fibroblasts can preferentially attract invading breast cancer cells.</p> <p>Conclusion</p> <p>Our assay displays several advantages over previous invasion assays as it is allows the quantitative analysis of directional invasive behavior of tumor cells in a 3D environment mimicking the tumor microenvironment. It should be particularly useful for the study of the effects of components of the tumor microenvironment on tumor cell invasiveness.</p

    Real-Time Contrast Enhancement to Improve Speech Recognition

    Get PDF
    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss

    Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors.

    No full text
    BackgroundAtypical teratoid rhabdoid tumor (AT/RT) is a rare, highly malignant pediatric tumor of the central nervous system that is usually refractory to available treatments. The aggressive growth, propensity to disseminate along the neuroaxis, and young age at diagnosis contribute to the poor prognosis. Previous studies have demonstrated the efficacy of using oncolytic measles virus (MV) against localized and disseminated models of medulloblastoma. The purpose of this study was to evaluate the oncolytic potential of MV in experimental models of AT/RT.MethodsFollowing confirmation of susceptibility to MV infection and killing of AT/RT cells in vitro, nude mice were injected with BT-12 and BT-16 AT/RT cells stereotactically into the caudate nucleus (primary tumor model) or lateral ventricle (disseminated tumor model). Recombinant MV was administered either intratumorally or intravenously. Survival was determined for treated and control animals. Necropsy was performed on animals showing signs of progressive disease.ResultsAll cell lines exhibited significant killing when infected with MV, all formed syncytia with infection, and all generated infectious virus after infection. Orthotopic xenografts displayed cells with rhabdoid-like cellular morphology, were negative for INI1 expression, and showed dissemination within the intracranial and spinal subarachnoid spaces. Intratumoral injection of live MV significantly prolonged the survival of animals with intracranial and metastatic tumors.ConclusionThese data demonstrate that AT/RT is susceptible to MV killing and suggest that the virus may have a role in treating this tumor in the clinical setting

    Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors

    No full text
    BACKGROUND: Atypical teratoid rhabdoid tumor (AT/RT) is a rare, highly malignant pediatric tumor of the central nervous system that is usually refractory to available treatments. The aggressive growth, propensity to disseminate along the neuroaxis, and young age at diagnosis contribute to the poor prognosis. Previous studies have demonstrated the efficacy of using oncolytic measles virus (MV) against localized and disseminated models of medulloblastoma. The purpose of this study was to evaluate the oncolytic potential of MV in experimental models of AT/RT. METHODS: Following confirmation of susceptibility to MV infection and killing of AT/RT cells in vitro, nude mice were injected with BT-12 and BT-16 AT/RT cells stereotactically into the caudate nucleus (primary tumor model) or lateral ventricle (disseminated tumor model). Recombinant MV was administered either intratumorally or intravenously. Survival was determined for treated and control animals. Necropsy was performed on animals showing signs of progressive disease. RESULTS: All cell lines exhibited significant killing when infected with MV, all formed syncytia with infection, and all generated infectious virus after infection. Orthotopic xenografts displayed cells with rhabdoid-like cellular morphology, were negative for INI1 expression, and showed dissemination within the intracranial and spinal subarachnoid spaces. Intratumoral injection of live MV significantly prolonged the survival of animals with intracranial and metastatic tumors. CONCLUSION: These data demonstrate that AT/RT is susceptible to MV killing and suggest that the virus may have a role in treating this tumor in the clinical setting
    • …
    corecore