1,255 research outputs found

    The localization transition in SU(3) gauge theory

    Full text link
    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum, coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.Comment: 7 pages, 5 figures, v3: additional data on finer lattice; final, published versio

    On the measurement of frequency and of its sample variance with high-resolution counters

    Full text link
    A frequency counter measures the input frequency νˉ\bar{\nu} averaged over a suitable time τ\tau, versus the reference clock. High resolution is achieved by interpolating the clock signal. Further increased resolution is obtained by averaging multiple frequency measurements highly overlapped. In the presence of additive white noise or white phase noise, the square uncertainty improves from σν21/τ2\smash{\sigma^2_\nu\propto1/\tau^2} to σν21/τ3\smash{\sigma^2_\nu\propto1/\tau^3}. Surprisingly, when a file of contiguous data is fed into the formula of the two-sample (Allan) variance σy2(τ)=E{12(yˉk+1yˉk)2}\smash{\sigma^2_y(\tau)=\mathbb{E}\{\frac12(\bar{y}_{k+1}-\bar{y}_k) ^2\}} of the fractional frequency fluctuation yy, the result is the \emph{modified} Allan variance mod σy2(τ)\sigma^2_y(\tau). But if a sufficient number of contiguous measures are averaged in order to get a longer τ\tau and the data are fed into the same formula, the results is the (non-modified) Allan variance. Of course interpretation mistakes are around the corner if the counter internal process is not well understood.Comment: 14 pages, 5 figures, 1 table, 18 reference

    Probing the massive star forming environment - a multiwavelength investigation of the filamentary IRDC G333.73+0.37

    Full text link
    We present a multiwavelength study of the filamentary infrared dark cloud (IRDC) G333.73+0.37. The region contains two distinct mid-infrared sources S1 and S2 connected by dark lanes of gas and dust. Cold dust emission from the IRDC is detected at seven wavelength bands and we have identified 10 high density clumps in the region. The physical properties of the clumps such as temperature: 14.3-22.3 K and mass: 87-1530 M_sun are determined by fitting a modified blackbody to the spectral energy distribution of each clump between 160 micron and 1.2 mm. The total mass of the IRDC is estimated to be $~4700 M_sun. The molecular line emission towards S1 reveals signatures of protostellar activity. Low frequency radio emission at 1300 and 610 MHz is detected towards S1 (shell-like) and S2 (compact morphology), confirming the presence of newly formed massive stars in the IRDC. Photometric analysis of near and mid-infrared point sources unveil the young stellar object population associated with the cloud. Fragmentation analysis indicates that the filament is supercritical. We observe a velocity gradient along the filament, that is likely to be associated with accretion flows within the filament rather than rotation. Based on various age estimates obtained for objects in different evolutionary stages, we attempt to set a limit to the current age of this cloud.Comment: 26 pages, 20 figures, accepted by Ap

    Radio and infrared study of the star forming region IRAS 20286+4105

    Full text link
    A multi-wavelength investigation of the star forming complex IRAS 20286+4105, located in the Cygnus-X region, is presented here. Near-infrared K-band data is used to revisit the cluster / stellar group identified in previous studies. The radio continuum observations, at 610 and 1280 MHz show the presence of a HII region possibly powered by a star of spectral type B0 - B0.5. The cometary morphology of the ionized region is explained by invoking the bow-shock model where the likely association with a nearby supernova remnant is also explored. A compact radio knot with non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus-X region show the presence of six Class I YSOs inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be {\sim} 175 M{\sun} and 30 M{\sun}. The mass-radius relation and the surface density of the clumps do not qualify them as massive star forming sites. An overall picture of a runaway star ionizing the cloud and a triggered population of intermediate-mass, Class I sources located toward the cloud centre emerges from this multiwavelength study. Variation in the dust emissivity spectral index is shown to exist in this region and is seen to have an inverse relation with the dust temperature.Comment: 20 pages, 16 figures, accepted for publication in MNRA
    corecore