3,673 research outputs found

    The CMV bispectral problem

    Get PDF
    A classical result due to Bochner classifies the orthogonal polynomials on the real line which are common eigenfunctions of a second order linear differential operator. We settle a natural version of the Bochner problem on the unit circle which answers a similar question concerning orthogonal Laurent polynomials and can be formulated as a bispectral problem involving CMV matrices. We solve this CMV bispectral problem in great generality proving that, except the Lebesgue measure, no other one on the unit circle yields a sequence of orthogonal Laurent polynomials which are eigenfunctions of a linear differential operator of arbitrary order. Actually, we prove that this is the case even if such an eigenfunction condition is imposed up to finitely many orthogonal Laurent polynomials.Comment: 25 pages, final version, to appear in International Mathematics Research Notice

    Defensive alliances in graphs: a survey

    Full text link
    A set SS of vertices of a graph GG is a defensive kk-alliance in GG if every vertex of SS has at least kk more neighbors inside of SS than outside. This is primarily an expository article surveying the principal known results on defensive alliances in graph. Its seven sections are: Introduction, Computational complexity and realizability, Defensive kk-alliance number, Boundary defensive kk-alliances, Defensive alliances in Cartesian product graphs, Partitioning a graph into defensive kk-alliances, and Defensive kk-alliance free sets.Comment: 25 page
    • …
    corecore