57 research outputs found

    Current perpendicular to plane Giant Magnetoresistance (GMR) in laminated nanostructures

    Full text link
    We theoretically studied spin dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of GMR. This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones despite lamination induces a significant increase in CPP resistance.Comment: 4 pages, 2 figure

    Density-of-states picture and stability of ferromagnetism in the highly-correlated Hubbard model

    Full text link
    The problem of stability of saturated and non-saturated ferromagnetism in the Hubbard model is considered in terms of the one-particle Green's functions. Approximations by Edwards and Hertz and some versions of the self-consistent approximations based on the 1/z-expansion are considered. The account of longitudinal fluctuations turns out to be essential for description of the non-saturated state. The corresponding pictures of density of states are obtained. "Kondo" density-of-states singularities owing to spin-flip processes are analyzed. The critical electron concentrations for instabilities of saturated ferromagnetism and paramagnetic state are calculated for various lattices. Drawbacks of various approximations are discussed. A comparison with the results of previous works is performed.Comment: 16 pages, 7 eps figure

    Localization corrections to the anomalous Hall effect in a ferromagnet

    Full text link
    We calculate the localization corrections to the anomalous Hall conductivity related to the contribution of spin-orbit scattering into the current vertex (side-jump mechanism). We show that in contrast to the ordinary Hall effect, there exists a nonvanishing localization correction to the anomalous Hall resistivity. The correction to the anomalous Hall conductivity vanishes in the case of side-jump mechanism, but is nonzero for the skew scattering. The total correction to the nondiagonal conductivity related to both mechanisms, does not compensate the correction to the diagonal conductivity.Comment: 7 pages with 7 figure

    Dipolar interactions and anisotropic magnetoresistance in metallic granular systems

    Full text link
    We revisit the theory of magnetoresistance for a system of nanoscopic magnetic granules in metallic matrix. Using a simple model for the spin dependent perturbation potential of the granules, we solve Boltzmann equation for the spin dependent components of the non equilibrium electronic distribution function. For typical values of the geometric parameters in granular systems, we find a peculiar structure of the distribution function of conduction electrons, which is at variance with the two-current model of conduction in inhomogeneous systems. Our treatment explicitly includes the effects of dipolar correlations yielding a magnetoresistance ratio which contains, in addition to the term proportional to the square of uniform magnetization (), a weak anisotropic contribution depending on the angle between electric and magnetic fields, and arising from the anisotropic character of dipolar interactions.Comment: 9 pages, 2 figures, accepted in PR

    Magnetic modulation of inverse Spin Hall Effect in lateral spin-valves

    No full text
    International audienceWe analytically investigated the spin-dependent transport properties in a lateral spin-valve device comprising pinned ferromagnetic electrodes allowing to inject a spin current in a spin conducting channel where spin orbit scattering takes place. This produces an Inverse Spin Hall voltage (ISHE) across the thickness of the spin conducting channel. It is shown that by adding an extra soft ferromagnetic electrode with rotatable magnetization along the spin conducting channel, the ISHE generated voltage can be magnetically modulated by changing the magnetization orientation of this additional electrode. The dependence of the ISHE voltage on the direction of magnetization of the ferromagnetic electrode with rotatable magnetization was calculated in various configurations. Our results suggest that such structures could be considered as magnetic field sensors in situations where the total thickness of the sensor is constrained such as in hard disk drive readers

    The thermal characteristics of thawing silts of glacial genesis

    No full text
    • …
    corecore