261 research outputs found

    Pattern formation in the dipolar Ising model on a two-dimensional honeycomb lattice

    Full text link
    We present Monte Carlo simulation results for a two-dimensional Ising model with ferromagnetic nearest-neighbor couplings and a competing long-range dipolar interaction on a honeycomb lattice. Both structural and thermodynamic properties are very similar to the case of a square lattice, with the exception that structures reflect the sixfold rotational symmetry of the underlying honeycomb lattice. To deal with the long-range nature of the dipolar interaction we also present a simple method of evaluating effective interaction coefficients, which can be regarded as a more straightforward alternative to the prevalent Ewald summation techniques.Comment: 5 pages, 5 figure

    Effect of dopant atoms on local superexchange in cuprate superconductors: a perturbative treatment

    Full text link
    Recent scanning tunneling spectroscopy experiments have provided evidence that dopant impurities in high- Tc superconductors can strongly modify the electronic structure of the CuO2 planes nearby, and possibly influence the pairing. To investigate this connection, we calculate the local magnetic superexchange J between Cu ions in the presence of dopants within the framework of the three-band Hubbard model, up to fifth-order in perturbation theory. We demonstrate that the sign of the change in J depends on the relative dopant-induced spatial variation of the atomic levels in the CuO2 plane, contrary to results obtained within the one-band Hubbard model. We discuss some realistic cases and their relevance for theories of the pairing mechanism in the cupratesComment: 5 pages, 4 figures, revised versio

    Correlation effects on the electronic structure of TiOCl: a NMTO+DMFT study

    Full text link
    Using the recently developed N-th order muffin-tin orbital-based downfolding technique in combination with the Dynamical Mean Field theory, we investigate the electronic properties of the much discussed Mott insulator TiOCl in the undimerized phase. Inclusion of correlation effects through this approach provides a description of the spectral function into an upper and a lower Hubbard band with broad valence states formed out of the orbitally polarized, lower Hubbard band. We find that these results are in good agreement with recent photo-emission spectra.Comment: 4 pages, 3 figure

    High-energy emission from jet-cloud interactions in AGNs

    Full text link
    Active galactic nuclei present continuum and line emission. The emission lines are originated by gas located close to the central super-massive black hole. Some of these lines are broad, and would be produced in a small region called broad-line region. This region could be formed by clouds surrounding the central black hole. In this work, we study the interaction of such clouds with the base of the jets in active galactic nuclei, and we compute the produced high-energy emission. We focus on sources with low luminosities in the inner jet regions, to avoid strong gamma-ray absorption. We find that the resulting high-energy radiation may be significant in Centaurus A. Also, this phenomenon might be behind the variable gamma-ray emission detected in M87, if very large dark clouds are present. The detection of jet-cloud interactions in active galactic nuclei would give information on the properties of the jet base and the very central regions.Comment: 6 pages, 3 figures. To appear in the proceeding of the conference: "High Energy Phenomena in Relativistic Outflows (HEPRO) II", held in Buenos Aires, Argentina, October 26-30 2009

    Electronic properties of Fabre charge-transfer salts under various temperature and pressure conditions

    Get PDF
    Using density functional theory, we determine parameters of tight-binding Hamiltonians for a variety of Fabre charge transfer salts, focusing in particular on the effects of temperature and pressure. Besides relying on previously published crystal structures, we experimentally determine two new sets of structures; (TMTTF)2_2SbF6_6 at different temperatures and (TMTTF)2_2PF6_6 at various pressures. We find that a few trends in the electronic behavior can be connected to the complex phase diagram shown by these materials. Decreasing temperature and increasing pressure cause the systems to become more two-dimensional. We analyze the importance of correlations by considering an extended Hubbard model parameterized using Wannier orbital overlaps and show that while charge order is strongly activated by the inter-site Coulomb interaction, the magnetic order is only weakly enhanced. Both orders are suppressed when the effective pressure is increased.Comment: 12 pages, 16 figure

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe

    Spin Hall conductivity in the Kane-Mele-Hubbard model at finite temperature

    Full text link
    The Kane-Mele model is known to show a quantized spin Hall conductivity at zero temperature. Including Hubbard interactions at each site leads to a quantum phase transition to an XY antiferromagnet at sufficiently high interaction strength. Here, we use the two-particle self-consistent approach (TPSC), which we extend to include spin-orbit coupling, to investigate the Kane-Mele-Hubbard model at finite temperature and half-filling. TPSC is a weak to intermediate coupling approach capable of calculating a frequency- and momentum-dependent self-energy from spin and charge fluctuations. We present results for the spin Hall conductivity and correlation lengths for antiferromagnetic spin fluctuations for different values of temperature, spin-orbit coupling and Hubbard interaction. The vertex corrections, which here are analogues of Maki-Thompson contributions, show a strong momentum dependence and give a large contribution in the vicinity of the phase transition at all temperatures. Their inclusion is necessary to observe the quantization of the spin Hall conductivity for the interacting system in the zero temperature limit. At finite temperature, increasing the Hubbard interaction leads to a decrease of the spin Hall conductivity. This decrease can be explained by band-gap renormalization from scattering of electrons on antiferromagnetic spin fluctuations.Comment: 11 pages, 8 figure

    Multiferroic FeTe2_2O5_5Br: Alternating spin chains with frustrated interchain interactions

    Full text link
    A combination of density functional theory calculations, many-body model considerations, magnetization and electron spin resonance measurements shows that the multiferroic FeTe2_2O5_5Br should be described as a system of alternating antiferromagnetic S=5/2S=5/2 chains with strong Fe-O-Te-O-Fe bridges weakly coupled by two-dimensional frustrated interactions, rather than the previously reported tetramer models. The peculiar temperature dependence of the incommensurate magnetic vector can be explained in terms of interchain exchange striction being responsible for the emergent net electric polarization.Comment: 7 pages, 6 figure

    Local moments and symmetry breaking in metallic PrMnSbO

    Full text link
    We report a combined experimental and theoretical investigation of the layered antimonide PrMnSbO which is isostructural to the parent phase of the iron pnictide superconductors. We find linear resistivity near room temperature and Fermi liquid-like T^{2} behaviour below 150 K. Neutron powder diffraction shows that unfrustrated C-type Mn magnetic order develops below \sim 230 K, followed by a spin-flop coupled to induced Pr order. At T \sim 35 K, we find a tetragonal to orthorhombic (T-O) transition. First principles calculations show that the large magnetic moments observed in this metallic compound are of local origin. Our results are thus inconsistent with either the itinerant or frustrated models proposed for symmetry breaking in the iron pnictides. We show that PrMnSbO is instead a rare example of a metal where structural distortions are driven by f-electron degrees of freedom
    • …
    corecore