35 research outputs found

    Sweet Sorghum for Biofuel Industry

    Get PDF
    Renewable sources of energy can help mitigate the negative effects associated with the use of fossil fuels and represent a growing share of the energy portfolio. Biofuels are the only source of liquid transportation fuel that is both renewable and compatible with the existing fleet of vehicles. Sweet sorghum as a biofuel crop has many attractive features that make it an excellent source of renewable energy. The diversion of crop land for cultivation of sweet sorghum does not arise with as it meets food, fuel, and fodder requirement. Sweet sorghum–based ethanol-producing distilleries have been established in China, India, and elsewhere. Besides ethanol, acetone, butanol, lactic acid, butyric acid, hydrogen, and methane are other fermentation products that can be produced. Sweet sorghum also produces several potential native products such as cellulose for paper production, waxes, proteins, and allelopathic compounds such as sorgoleone. In general, complementation of sweet sorghum with sugarcane is possible in those areas of the world where sugarcane is produced, as sweet sorghum is compatible with the infrastructure and the managerial expertise available in the sugarcane industry

    Sweet sorghum (Sorghum bicolor (L.) Moench)- A new generation water use efficient bioenergy crop

    Get PDF
    Biofuels have been widely recognized as a best alternative to insulate emerging economies against fastly depleting fossil fuels coupled with highly volatile prices. Sweet sorghum is a multipurpose bioethanol feedstock with greater adaptability with triple benefits (food, fodder and fuel) and cannot be part of much debated food vs. fuel issue. This article gives a brief overview of research results on water use and water use efficiency of sweet sorghum, a new generation bioenergy crop. This feedstock performs superior at many locations in terms of resource use efficiency vis a vis sugarcane, corn and tropical sugar beet and scores fairly well for adaptation to dry land conditions due to its inherent characteristic

    Composting of Sweet Sorghum Bagasse and its Impact on Plant Growth Promotion

    Get PDF
    The present study was carried out to optimize a protocol to rapidly decompose sweet sorghum bagasse and to evaluate the bagasse compost for plant growth promotion (PGP) in sweet sorghum. A total of ten cellulose-degrading microbes were screened for decomposing sweet sorghum bagasse, of which three (Myceliophthora thermophila ATCC 48104, Aspergillus awamori and Bacillus subtilis ATCC 6633) decomposed bagasse efficiently in 60 days. When these potential microbes were characterized for their in vitro PGP traits, all were found to produce indole acetic acid, cellulase, lipase (except M. thermophila) and siderophore (only A. awamori) and solubilize phosphorous (except M. thermophila). The bagasse compost prepared with the three microbes was evaluated for PGP on sweet sorghum under greenhouse conditions. The results showed that the bagasse compost prepared with potential microbes significantly and consistently enhanced PGP traits including the plant height (37–44%), leaf weight (63–81%), shoot weight (38–66%), root weight (87–89%), leaf area (75–83%) and root length (37–48%) at 35 days after sowing (DAS); shoot weight (40–58%) and root weight (24–38%) at 70 DAS; and shoot weight (30–46%), panicle weight (40–51%), seed number (20–62%) and seed weight (37–65%) at harvest over the bagasse compost prepared without microbes. Among the three potential strains, A. awamori and M. thermophila significantly and consistently enhanced all the PGP traits compared to B. subtilis. It is concluded that sweet sorghum bagasse can be decomposed rapidly and the bagasse compost prepared with microbes can be successfully used for PGP in sweet sorghum

    Sweet Sorghum Research and Development in India: Status and Prospects

    Get PDF
    Renewable energy is a critical source of energy that contributes to energy security, reducing dependence on fossil fuels and emission of greenhouse gases. India would require more than 6.3 billion liters of ethanol to meet its ambitious target of 20 % EBP by 2017. Sweet sorghum is a promising dryland adapted biofuel feedstock that addresses food-versus-fuel issue favourably. Owing to its genetic variability in terms of stalk sugar traits such as total soluble sugars, green stalk yield, juice quantity and grain yield various research institutes in India and abroad have developed superior varieties and hybrids. Two commercial sweet sorghum based distilleries were established in India but could not operate for long for several reasons. The decentralized crushing units were established to overcome the issues encountered by centralized units. The large scale cultivation of sweet sorghum can happen if improved cultivars with higher sugar yield with multiple biotic and abiotic stress tolerance are available besides more importantly the policy support from Government of India in terms of both producer and processor incentives materialize

    Enzymatic hydrolysis of market vegetable waste and subsequent ethanol fermentation-Kinetic evaluation

    Get PDF
    In this work, kinetic properties evaluation was made for bioethanol production from sugar hydrolysate of vegetable waste. The saccharified sugars were fermented by using Saccharomyces cerevisiae. The effect of various saccharification factors on sugars release were studied and observed that the optimized conditions contributed to 14.4 gL-1of fermentable sugars production. The produced sugars were subjected to batch fermentation by Saccharomyces cerevisiae at pH 4.5 and the kinetic parameters of fermentation were estimated by fitting the experimental data in modified logistic equations. The data revealed product (ethanol) yield (YP/S) of 0.39g/g of reducing sugars. Maximum specific growth rate (μmax), the yield of ethanol on biomass (YP/X) and the yield of biomass on sugars utilization (YX/S) were determined to be 0.18 h-1, 1.097 g/g and 0.313 g/g, respectively. The process yielded 4.13 gL-1 of ethanol by consumption of 10.6 gL-1 sugars with a volumetric production rate of 0.0861±0.002 gL-1 h-1

    Sweet sorghum cultivar options

    Get PDF
    Sweet sorghum can be grown under dryland conditions with annual rainfall ranging from 550-750 mm. The best areas to produce this crop are Central and South India, subtropical areas of Uttar Pradesh and Uttaranchal. It can be grown on well-drained soils such as silt loam or sandy silt clay loam soils with a depth of 0.75 m. Atmospheric temperatures suitable for sweet sorghum growth vary between 15 and 37°C. Sorghum being a C4 species is adapted to a wide range of environments with latitudes ranging from 40oN to 40oS of the equator. Sorghum in general has relatively a deep root system (>1.5 m), and has the unique feature of being ‘dormant’ under unfavorable conditions and resume growth once environmental conditions are favorabl

    Sweet Sorghum: Genetics, Breeding and Commercialization

    Get PDF
    This chapter describes sweet sorghum characteristics and utilization as food and fuel; climate requirements and distribution; reproductive biology including floral biology, pollination, fertilization and seed development; genomics; genetic transformation; breeding objectives and methods; and commercialization. Full exploration of the available genetic resources through plant breeding with the aid of molecular tools could dramatically increase biomass yield of sorghum and thus meet the demand of feedstocks for biofuel production without a significant impact on our food supply and natural environment

    Sweet Sorghum Planting Effects on Stalk Yield and Sugar Quality in Semi-Arid Tropical Environment

    Get PDF
    Sweet sorghum [Sorghum bicolor (L.) Moench] has potential as a bioenergy crop for producing food, fiber, and fermentable sugar. Unlike dryland grain sorghum, little information is available on the influence of staggered planting and genotypes, especially in semiarid tropical environments. The objectives of the present study were (i) to quantify the effects of planting time and genotype on stalk and biomass yields, juice sugar quality, and (ii) to identify the most productive genotypes and planting windows for sustainable feedstock supply. Four commercial sweet sorghum genotypes (SSV84, SSV74, CSV19SS, and CSH22SS) were planted on five planting dates (1 June, 16 June, 1 July, 16 July, and 1 August) during the rainy (June–October) season of 2008 and 2009 in Hyderabad (17°27´ N, 78°28´ E), India. Planting in early and mid-June produced significantly (P ≤ 0.05) higher fresh stalk yield and grain yield than later planting dates. Commercial hybrid CSH22SS produced significantly more stalk, grain, sugar, and ethanol yield over genotypes SSV84 or SSV74. Based on the stalk yield, juice sugar quality, sugar, and ethanol yields, the optimum planting dates for sweet sorghum in semiarid tropical climate is early June to early July. Planting sweet sorghum during this time allows more feedstock to be harvested and hence extends the period for sugar mill operation by about 1 mo, that is, from the first to the last week of October

    Identification of Ideal Locations and Stable High Biomass Sorghum Genotypes in semiarid Tropics

    Get PDF
    The dearth of proper delineation for energy sorghum cultivation has led to a prerequisite for evaluation and identification of test environments for the newly developed lines. This becomes of vital importance as the biomass yield is highly influenced by genotype and environmental (G × E) interactions. Several agronomic traits were considered to assess the biomass yield and the combined analysis of variance for G (genotype), L (location) and interaction effect of G × L. The variations in the yield caused by the interaction of G × L are very essential to acquire knowledge on the specific adaptation of a genotype. Thus, the multi-location trials conducted across locations and years have helped to identify the stable environments with specific adaptation for biomass sorghum. The presence of close association between the test locations suggested that the same information about the genotypes could be obtained from fewer test environments, and hence the potential to reduce evaluation costs. The two genotypes—IS 13762 and ICSV 25333—have shown stable performance for biomass traits across all the locations, in comparison with CSH 22SS (check). The top ten entries with stable and better performance for fresh biomass yield, dry biomass yield, grain yield and theoretical ethanol yield were ICSV 25333, IS 13762, CSH 22SS, IS 25302, IS 25301, IS 27246, IS 16529, DHBM2, ICSSH 28 and IS 17349
    corecore