3,993 research outputs found

    Spin Bose Glass Phase in Bilayer Quantum Hall Systems at ν=2\nu=2

    Full text link
    We develop an effective spin theory to describe magnetic properties of the ν=2\nu=2 Quantum Hall bilayer systems. In the absence of disorder this theory gives quantitative agreement with the results of microscopic Hartree-Fock calculations, and for finite disorder it predicts the existence of a novel spin Bose glass phase. The Bose glass is characterized by the presence of domains of canted antiferromagnetic phase with zero average antiferromagnetic order and short range mean antiferromagnetic correlations. It has infinite antiferromagnetic transverse susceptibility, finite longitudinal spin susceptibility and specific heat linear in temperature. Transition from the canted antiferromagnet phase to the spin Bose glass phase is characterized by a universal value of the longitudinal spin conductance.Comment: 4 pages, 4 eps figure

    Magnetization in electron- and Mn- doped SrTiO3

    Full text link
    Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure

    Resonant optical electron transfer in one-dimensional multiwell structures

    Full text link
    We consider coherent single-electron dynamics in the one-dimensional nanostructure under resonant electromagnetic pulse. The structure is composed of two deep quantum wells positioned at the edges of structure and separated by a sequence of shallow internal wells. We show that complete electron transfer between the states localized in the edge wells through one of excited delocalized states can take place at discrete set of times provided that the pulse frequency matches one of resonant transition frequencies. The transfer time varies from several tens to several hundreds of picoseconds and depends on the structure and pulse parameters. The results obtained in this paper can be applied to the developments of the quantum networks used in quantum communications and/or quantum information processing.Comment: 25 pages,16 figure

    Temperature dependent spin susceptibility in a two-dimensional metal

    Full text link
    We consider a two-dimensional electron system with Coulomb interaction between particles at a finite temperature T. We show that the dynamic Kohn anomaly in the response function at 2K_F leads to a linear-in-T correction to the spin susceptibility, same as in systems with short-range interaction. We show that the singularity of the Coulomb interaction at q=0 does not invalidate the expansion in powers of r_s, but makes the expansion non-analytic. We argue that the linear temperature dependence is consistent with the general structure of Landau theory and can be viewed as originating from the non-analytic component of the Landau function near the Fermi surface.Comment: 4 pages, no figure

    First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-field Theory

    Full text link
    A recently developed dynamical mean-field theory in the iterated perturbation theory approximation was used as a basis for construction of the "first principles" calculation scheme for investigating electronic structure of strongly correlated electron systems. This scheme is based on Local Density Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals (LMTO) method. The classical example of the doped Mott-insulator La_{1-x}Sr_xTiO_3 was studied by the new method and the results showed qualitative improvement in agreement with experimental photoemission spectra.Comment: 11 pages, 3 Postscript figures, LaTeX, submit in Journal of Physics: Condensed Matte

    Ferromagnetic and random spin ordering in diluted magnetic semiconductors

    Full text link
    In a diluted magnetic semiconductor system, the exchange interaction between magnetic impurities has two independent components: a direct antiferromagnetic interaction and a ferromagnetic interaction mediated by charge carriers. Depending on the system parameters, the ground state of the system may be ordered either ferromagnetically or randomly. In this paper we use percolation theory to find the ferromagnetic transition temperature and the location of the quantum critical point separating the ferromagnetic phase and a valence bond glass phase.Comment: 9 pages, 2 figures, a reference adde

    Probing nn-Spin Correlations in Optical Lattices

    Full text link
    We propose a technique to measure multi-spin correlation functions of arbitrary range as determined by the ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the Stokes parameters, using focused lasers and microwave pulsing, can be related to nn-spin correlators. We discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent spin wave dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure

    Bilayer Quantum Hall Systems at Filling Factor \nu=2: An Exact Diagonalisation Study

    Get PDF
    We present an exact diagonalisation study of bilayer quantum Hall systems at a filling factor of two in the spherical geometry. We find the high-Zeeman-coupling phase boundary of the broken symmetry canted antiferromagnet is given exactly by previous Hartree-Fock mean-field theories, but that the state's stability at weak Zeeman coupling has been qualitatively overestimated. In the absence of interlayer tunneling, degeneracies occur between total spin multiplets due to the Hamiltonian's invariance under independent spin-rotations in top and bottom two-dimensional electron layers.Comment: Some remarks added in the discussion of the phase diagram, and some typos corrected. Version to be published in Phys. Rev. Let

    Does Inner Awareness Always Accompany Outer Awareness During Perception?

    Get PDF
    In the present paper, we defend the thesis that outer-world-directed perceptual consciousness is always accompanied by an inner awareness (IAOA). This is contrary to the view that outer-world-directed conscious mental states are not accompanied by an inner awareness, which is held by Gennaro (2008) against Kriegel’s (2009a and 2009b) self-representationalism. We attempt to show why philosophers like Gennaro get it wrong when they deny the IAOA thesis by critically examining his arguments against it and by giving arguments in its favour.Ar vidinis žinojimas percepcijos metu visada lydi išorinį žinojimą
    corecore