36 research outputs found
Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity
The neutrino helicity-flip process under the conditions of the supernova core
is reinvestigated. Instead of the uniform ball model for the SN core used in
previous analyses, realistic models for radial distributions and time evolution
of physical parameters in the SN core are considered. A new upper bound on the
Dirac neutrino magnetic moment is obtained from the limit on the supernova core
luminosity for nu_R emission.Comment: 13 pages, LaTeX, 8 EPS figures, submitted to Int. J. Mod. Phys.
The Exact Electron Propagator in a Magnetic Field as the Sum over Landau Levels on a Basis of the Dirac Equation Exact Solutions
The exact propagator for an electron in a constant uniform magnetic field as
the sum over Landau levels is obtained by the direct derivation by standard
methods of quantum field theory from exact solutions of the Dirac equation in
the magnetic field. The result can be useful for further development of the
calculation technique of quantum processes in an external active medium,
particularly in the conditions of moderately large field strengths when it is
insufficient to take into account only the ground Landau level contribution.Comment: 9 pages, LaTeX; v2: 3 misprints corrected, a note and 1 reference
added; to appear in Int. J. Mod. Phys.
Dirac-Neutrino Magnetic Moment and the Dynamics of a Supernova Explosion
The double conversion of the neutrino helicity
has been analyzed for supernova conditions, where the first stage is due to the
interaction of the neutrino magnetic moment with plasma electrons and protons
in the supernova core, and the second stage, due to the resonance spin flip of
the neutrino in the magnetic field of the supernova envelope. It is shown that,
in the presence of the neutrino magnetic moment in the range and a magnetic field of G
between the neutrinosphere and the shock-stagnation region, an additional
energy of about erg, which is sufficient for a supernova explosion,
can be injected into this region during a typical shock-stagnation time.Comment: 10 pages, LaTeX, 4 EPS figures, accepted to JETP Letter
ΠΠΠΠΠΠΠΠΠ‘ΠΠΠ ΠΠΠ€ΠΠ§ΠΠ‘ΠΠΠ ΠΠΠΠΠΠΠ«Π Π ΠΠ Π Π ΠΠ‘Π¨ΠΠ ΠΠΠΠ ΠΠ£ΠΠΠΠΠ‘ΠΠΠ ΠΠ Π£ΠΠΠΠ ΠΠΠΠΠ ΠΠΠΠΠΠ ΠΠ ΠΠΠΠΠ¦ΠΠ (1500 ΠΠΠ ΠΠΠ’) Π‘ΠΠΠΠ ΠΠΠ Π‘ΠΠΠΠ Π
Within the Anabar shield in the northern part of the Siberia, Late Precambrian mafic igneous units are widespread, which form dyke swarms of different ages of different trends. This paper presents new data on the composition, structure and U-Pb dating of the E-W trending Kengede dyke swarm. Three new U-Pb ID-TIMS baddeleyite ages (1496Β±7, 1494Β±3 and 1494Β±5 Ma) were obtained from three dykes, indicating that the Kengede swarm is part of the 1500 Ma Kuonamka large igneous province (LIP). The previously recognized Kuonamka Large Igneous Province (LIP) extends for 700 km from the Anabar shield to the Olenek uplift in the northern part of the Siberia and is potentially linked to coeval dykes and sills of the SΓ£o Francisco craton and the Congo craton. The newly dated Kengede swarm is parallel to but offset by 50 km from the previously dated 1501Β±3 Ma Kuonamka swarm, and the identification of these two subparallel dyke subswarms of the Kuonamka LIP supports the earlier interpretation that mantle plume centre was located along the extrapolated trend of the dykes near the eastern or western margin of the Siberia. The paper examines features of sulfide Cu-Ni mineralization in dolerites of the Kengede and East Anabar dyke swarms and discusses potential Cu-Ni-sulfide mineralization linked to the Precambrian mafic dyke swarms of different ages in the north-east of the Siberia.Π ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΠ½Π°Π±Π°ΡΡΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ° Π² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π° ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Ρ ΠΏΠΎΠ·Π΄Π½Π΅Π΄ΠΎΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΠ΅ Π±Π°Π·ΠΈΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΡΠΌΠΈΡΡΡΡ ΡΠ°Π·Π½ΠΎΠ²ΠΎΠ·ΡΠ°ΡΡΠ½ΡΠ΅ Π΄Π°ΠΉΠΊΠΎΠ²ΡΠ΅ ΡΠΎΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π½ΠΎΠ²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎ ΡΠΎΡΡΠ°Π²Ρ, ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΈ U-Pb Π΄Π°ΡΠΈΡΠΎΠ²ΠΊΠ°ΠΌ Π΄Π°Π΅ΠΊ ΠΠ΅Π½Π³Π΅Π΄ΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡ. Π’ΡΠΈ Π½ΠΎΠ²ΡΡ
Π²ΠΎΠ·ΡΠ°ΡΡΠ° ΠΏΠΎ Π±Π°Π΄Π΄Π΅Π»Π΅ΠΈΡΡ (1496Β±7, 1494Β±3 ΠΈ 1494Β±5 ΠΌΠ»Π½ Π»Π΅Ρ) ΠΈΠ· ΡΡΠ΅Ρ
Π΄Π°Π΅ΠΊ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΠΠ΅Π½Π³Π΅Π΄ΠΈΠ½ΡΠΊΠΈΠΉ ΡΠΎΠΉ Π΄Π°Π΅ΠΊ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΡΡΡΡ ΠΡΠΎΠ½Π°ΠΌΡΠΊΠΎΠΉ ΠΊΡΡΠΏΠ½ΠΎΠΉ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ²ΠΈΠ½ΡΠΈΠΈ (ΠΠΠ). Π Π°Π½Π΅Π΅ Π²ΡΠ΄Π΅Π»Π΅Π½Π½Π°Ρ ΠΡΠΎΠ½Π°ΠΌΡΠΊΠ°Ρ ΠΠΠ ΠΏΡΠΎΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π° 700 ΠΊΠΌ ΠΎΡ ΠΠ½Π°Π±Π°ΡΡΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ° Π΄ΠΎ ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π½ΡΡΠΈΡ Π² ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΡΠΌΠΈ Π΄Π°ΠΉΠΊΠ°ΠΌΠΈ ΠΈ ΡΠΈΠ»Π»Π°ΠΌΠΈ ΠΊΡΠ°ΡΠΎΠ½ΠΎΠ² Π‘Π°Π½-Π€ΡΠ°Π½ΡΠΈΡΠΊΠΎ ΠΈ ΠΠΎΠ½Π³ΠΎ. ΠΠ½ΠΎΠ²Ρ Π΄Π°ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΠ΅Π½Π³Π΅Π΄ΠΈΠ½ΡΠΊΠΈΠΉ ΡΠΎΠΉ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π² 50 ΠΊΠΌ ΡΠΆΠ½Π΅Π΅ ΠΎΡ ΠΡΠΎΠ½Π°ΠΌΡΠΊΠΎΠ³ΠΎ ΡΠΎΡ Π΄Π°Π΅ΠΊ (1501Β±3 ΠΌΠ»Π½ Π»Π΅Ρ), ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΡΠΈΡ
Π΄Π²ΡΡ
ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ±ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
Π΄Π°ΠΉΠΊΠΎΠ²ΡΡ
ΡΠΎΠ΅Π² ΠΡΠΎΠ½Π°ΠΌΡΠΊΠΎΠΉ ΠΠΠ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΡΡ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ΅Π½ΡΡ ΠΌΠ°Π½ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠ»ΡΠΌΠ° ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΡΡ Π²Π΄ΠΎΠ»Ρ ΡΠΊΡΡΡΠ°ΠΏΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅Π½Π΄Π° Π΄Π°Π΅ΠΊ Π²Π±Π»ΠΈΠ·ΠΈ Π²ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ ΠΎΠΊΡΠ°ΠΈΠ½Ρ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π°. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ Π² ΡΡΠ°ΡΡΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠ»ΡΡΠΈΠ΄Π½ΠΎΠΉ Cu-Ni-ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π² Π΄ΠΎΠ»Π΅ΡΠΈΡΠ°Ρ
ΠΠ΅Π½Π³Π΅Π΄ΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΠΎΡΡΠΎΡΠ½ΠΎ- ΠΠ½Π°Π±Π°ΡΡΠΊΠΎΠ³ΠΎ Π΄Π°ΠΉΠΊΠΎΠ²ΡΡ
ΡΠΎΠ΅Π² ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ Cu-Ni-ΡΡΠ»ΡΡΠΈΠ΄Π½ΠΎΠ΅ ΠΎΡΡΠ΄Π΅Π½Π΅Π½ΠΈΠ΅, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ Ρ ΡΠ°Π·Π½ΠΎΠ²ΠΎΠ·ΡΠ°ΡΡΠ½ΡΠΌΠΈ Π΄ΠΎΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΌΠΈ ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π΅ΠΊ Π½Π° ΡΠ΅Π²Π΅ΡΠΎ-Π²ΠΎΡΡΠΎΠΊΠ΅ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ
The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks
Β© 2015.A new large igneous province (LIP), the 1501 Β± 3 Ma Kuonamka LIP, extends across 700 km of northern Siberia and is linked with coeval dikes and sills in the formerly attached Sao Francisco craton (SFC)-Congo craton to yield a short-duration event 2000 km across. The age of the Kuonamka LIP can be summarized as 1501 Β± 3 Ma (95% confidence), based on 7 U-Pb ID-TIMS ages (6 new herein) from dolerite dikes and sills across the Anabar shield and within western Riphean cover rocks for a distance of 270 km. An additional sill yielded a SIMS (CAMECA) age of 1483 Β± 17 Ma and sill in the Olenek uplift several hundred kilometers farther east, a previous SIMS (SHRIMP) age of ca. 1473 Ma was obtained on a sill; both SIMS ages are within the age uncertainty of the ID-TIMS ages. Geochemical data indicate a tholeiitic basalt composition with low MgO (4-7 wt%) within-plate character based on trace element classification diagrams and source between E-MORB and OIB with only minor contamination from crust or metasomatized lithospheric mantle. Two subgroups are distinguished: Group 1 has gently sloping LREE ((La/Sm)PM = 1.9) and HREE ((Gd/Yb)PM = 1.8) patterns, slightly negative Sr and moderate TiO2 (2.2 wt%), and Group 2 has steeper LREE ((La/Sm)PM = 2.3) and HREE ((Gd/Yb)PM = 2.3), strong negative Sr anomaly, is higher in TiO2 (2.7 wt%), and is transitional from tholeiitic to weakly alkaline in composition. The slight differences in REE slopes are consistent with Group 2 on average melting at deeper levels. Proposed reconstructions of the Kuonamka LIP with 1500 Ma magmatism of the SFC-Congo craton are supported by a geochemical comparison. Specifically, the chemistry of the Chapada Diamantina and Curaga dikes of the SFC can be linked to that of Groups 1 and 2, respectively, of the Kuonamka LIP and are consistent with a common mantle source between EMORB and OIB and subsequent differentiation history. However, the coeval Humpata sills and dikes of the Angola block of the Congo craton represent a different magma batch
ΠΠΠΠΠ‘ΠΠΠ’ΠΠΠ¬ΠΠΠ― ΠΠΠ’ΠΠΠ¬ΠΠΠ‘Π’Π¬ ΠΠ’ ΠΠ‘Π’Π ΠΠΠ ΠΠΠ€ΠΠ ΠΠ’Π ΠΠΠΠΠΠ ΠΠ Π ΠΠΠΠΠΠΠΠ«Π ΠΠ£Π’Π ΠΠ Π‘ΠΠΠΠΠΠΠ―
Purpose. The aim is to analyze the occurrence of pre-hospital mortality from acute myocardial infarction inTomskin 27-years of observation and to develop recommendations for reducing mortality.Materials and methods. The results of the analysis of 6 076 cases of deaths from acute myocardial infarction in the prehospital setting, registered in the course of research on the WHO program Β«Register of acute myocardial infarctionΒ» in the period from 1984 to 2010.Β Results. It is shown that during the analyzed period of time the level of pre-hospital mortality did not change. Throughout the 27year observation period, the figure was higher in men and in patients younger than 60 years. In the vast majority of deaths from myocardial infarction in the prehospital setting was sudden, significantly reduced the efficiency of the current system in the medical care of patients with acute coronary disease.Conclusion. The most effective in reducing prehospital mortality associated with the event are mandatory and full prophylactic medical examination of patients with cardiovascular disease, in order to conduct an effective secondary prevention of coronary heart disease and acute myocardial infarction, and also to identify individuals at high risk for sudden cardiac death.Π¦Π΅Π»Ρ. ΠΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ»ΡΡΠ°Π΅Π² Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° Π² Π’ΠΎΠΌΡΠΊΠ΅ Π·Π° 27-Π»Π΅ΡΠ½ΠΈΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ ΠΏΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ 6 076 ΡΠ»ΡΡΠ°Π΅Π² Π³ΠΈΠ±Π΅Π»ΠΈ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΎΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° Π½Π° Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅, Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² Ρ
ΠΎΠ΄Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ΅ ΠΠΠ Β«Π Π΅Π³ΠΈΡΡΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°Β» Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 1984 ΠΏΠΎ 2010 Π³ΠΎΠ΄.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π·Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠΎΠ²Π΅Π½Ρ Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΠ»ΡΡ. Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ 27-Π»Π΅ΡΠ½Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΡΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π±ΡΠ» Π²ΡΡΠ΅ Ρ ΠΌΡΠΆΡΠΈΠ½ ΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΌΠΎΠ»ΠΎΠΆΠ΅ 60 Π»Π΅Ρ. Π ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΡΠΌΠ΅ΡΡΡ ΠΎΡ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° Π½Π° Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ Π±ΡΠ»Π° Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ, ΡΡΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ½ΠΈΠΆΠ°Π»ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠ΅ΠΉ Π² Π³ΠΎΡΠΎΠ΄Π΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ Π±ΠΎΠ»ΡΠ½ΡΠΌ Ρ ΠΎΡΡΡΠΎΠΉ ΠΊΠΎΡΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π² ΠΏΠ»Π°Π½Π΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ°Π½ΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-ΡΠΎΡΡΠ΄ΠΈΡΡΡΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ Ρ ΡΠ΅Π»ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΠΠ‘ ΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ Π»ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΡΠΌΠ΅ΡΡΠΈ.
Sulfides of the Modern Kamchatka Hydrothermal Systems
ABSTRACT Sulfides pyrite, melnikovite-pyrite, marcasite, sphalerite, chalcopyrite, galena, cinnabar, coloradoite, metacinnabar are precipitating at the modern geothermal systems of Kamchatka: Kireunsky, Dvukhyurtochny and Apapel'sky in Central Kamchatka, Vilyuchinsky and Mutnovsky in Southern Kamchatka. Ore deposits are spatially associated with hydrothermal springs. Pyrite is the most common mineral precipitated at the discharge of hydrothermal style. It varies in mode of occurrence, size, inner structure, chemical composition and microstructure. Frequently pyrite occurs as framboids, idiomorphic crystals and their aggregates. By chemical composition, two varieties of pyrite are observed: homogeneous and heterogeneous. Heterogeneity of composition is due to impurities of As, Cu, Sb, Hg and Ag. Au as impurity in pyrite was relieved only in pyrite from Voinovsky hot springs in Southern Kamchatka. Cinnabar is the next most common occurring mineral at the modern hydrothermal systems in Kamchatka. Chalcopyrite, galena, sphalerite and gold are rare minerals. The modern hydrothermal systems in Kamchatka provide the opportunity to study sulfide typomorphism and physico-chemical conditions of the deposition mechanism. We suppose that some of them are the elements of the long-life ore generating hydrothermal systems
Π Π°Π΄ΠΈΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΠΊΠ°ΡΠ΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ: Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ: ΠΎΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
The majority of modern biomedical research is aimed at personifying the diagnosis and treatment of various diseases. An individual approach can be implemented using radiomics β the latest radiation diagnostics associated with the extraction of a large number (from hundreds to several thousand) of additional quantitative indicators from medical images using specialized software. The method is actively used in oncology to identify radiochemoresistant tumor zones, as well as non-invasive determination of the phenotype and genotype of the neoplasm. At the same time, the prospects for the application and clinical significance of this approach in cardiology have not yet been determined and have been the subject of active research in recent years. In this regard, the purpose of this review was to collect information from available databases and assess the degree of knowledge of the problem of radiomic analysis of heart images using various radiation modalities, as well as to determine the prospects for using this approach in clinical practice.ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Π±ΠΈΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΠΏΠ΅ΡΡΠΎΠ½ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΌΠΎΠΆΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ°Π΄ΠΈΠΎΠΌΠΈΠΊΡ β Π½ΠΎΠ²Π΅ΠΉΡΠ΅Π΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π»ΡΡΠ΅Π²ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ΅ Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° (ΠΎΡ ΡΠΎΡΠ΅Π½ Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΡΡΡΡΡ) Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈΠ· ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΡΡΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ Π°ΠΊΡΠΈΠ²Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΠΎ-Ρ
ΠΈΠΌΠΈΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
Π·ΠΎΠ½ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΠΈ Π³Π΅Π½ΠΎΡΠΈΠΏΠ° Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π² ΠΊΠ°ΡΠ΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄ΠΎ ΡΠΈΡ
ΠΏΠΎΡ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ ΡΠ΅Π»ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡΠ° ΡΠ²ΠΈΠ»ΡΡ ΡΠ±ΠΎΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈΠ· Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
Π±Π°Π· Π΄Π°Π½Π½ΡΡ
ΠΈ ΠΎΡΠ΅Π½ΠΊΠ° ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ·ΡΡΠ΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠ°Π΄ΠΈΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΄ΡΠ° ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π»ΡΡΠ΅Π²ΡΡ
ΠΌΠΎΠ΄Π°Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅