36 research outputs found

    Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity

    Full text link
    The neutrino helicity-flip process under the conditions of the supernova core is reinvestigated. Instead of the uniform ball model for the SN core used in previous analyses, realistic models for radial distributions and time evolution of physical parameters in the SN core are considered. A new upper bound on the Dirac neutrino magnetic moment is obtained from the limit on the supernova core luminosity for nu_R emission.Comment: 13 pages, LaTeX, 8 EPS figures, submitted to Int. J. Mod. Phys.

    The Exact Electron Propagator in a Magnetic Field as the Sum over Landau Levels on a Basis of the Dirac Equation Exact Solutions

    Full text link
    The exact propagator for an electron in a constant uniform magnetic field as the sum over Landau levels is obtained by the direct derivation by standard methods of quantum field theory from exact solutions of the Dirac equation in the magnetic field. The result can be useful for further development of the calculation technique of quantum processes in an external active medium, particularly in the conditions of moderately large field strengths when it is insufficient to take into account only the ground Landau level contribution.Comment: 9 pages, LaTeX; v2: 3 misprints corrected, a note and 1 reference added; to appear in Int. J. Mod. Phys.

    Dirac-Neutrino Magnetic Moment and the Dynamics of a Supernova Explosion

    Full text link
    The double conversion of the neutrino helicity Ξ½Lβ†’Ξ½Rβ†’Ξ½L\nu_L \to \nu_R \to \nu_L has been analyzed for supernova conditions, where the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, and the second stage, due to the resonance spin flip of the neutrino in the magnetic field of the supernova envelope. It is shown that, in the presence of the neutrino magnetic moment in the range 10βˆ’13ΞΌB<ΞΌΞ½<10βˆ’12ΞΌB10^{-13} \mu_{\rm B} < \mu_\nu < 10^{-12} \mu_{\rm B} and a magnetic field of ∼1013\sim 10^{13} G between the neutrinosphere and the shock-stagnation region, an additional energy of about 105110^{51} erg, which is sufficient for a supernova explosion, can be injected into this region during a typical shock-stagnation time.Comment: 10 pages, LaTeX, 4 EPS figures, accepted to JETP Letter

    ΠšΠ•ΠΠ“Π•Π”Π˜ΠΠ‘ΠšΠ˜Π™ ΠœΠΠ€Π˜Π§Π•Π‘ΠšΠ˜Π™ Π”ΠΠ™ΠšΠžΠ’Π«Π™ Π ΠžΠ™ И Π ΠΠ‘Π¨Π˜Π Π•ΠΠ˜Π• ΠšΠ£ΠžΠΠΠœΠ‘ΠšΠžΠ™ ΠšΠ Π£ΠŸΠΠžΠ™ Π˜Π—Π’Π•Π Π–Π•ΠΠΠžΠ™ ΠŸΠ ΠžΠ’Π˜ΠΠ¦Π˜Π˜ (1500 ΠœΠ›Π Π›Π•Π’) Π‘Π•Π’Π•Π ΠΠžΠ™ Π‘Π˜Π‘Π˜Π Π˜

    Get PDF
    Within the Anabar shield in the northern part of the Siberia, Late Precambrian mafic igneous units are widespread, which form dyke swarms of different ages of different trends. This paper presents new data on the composition, structure and U-Pb dating of the E-W trending Kengede dyke swarm. Three new U-Pb ID-TIMS baddeleyite ages (1496Β±7, 1494Β±3 and 1494Β±5 Ma) were obtained from three dykes, indicating that the Kengede swarm is part of the 1500 Ma Kuonamka large igneous province (LIP). The previously recognized Kuonamka Large Igneous Province (LIP) extends for 700 km from the Anabar shield to the Olenek uplift in the northern part of the Siberia and is potentially linked to coeval dykes and sills of the SΓ£o Francisco craton and the Congo craton. The newly dated Kengede swarm is parallel to but offset by 50 km from the previously dated 1501Β±3 Ma Kuonamka swarm, and the identification of these two subparallel dyke subswarms of the Kuonamka LIP supports the earlier interpretation that mantle plume centre was located along the extrapolated trend of the dykes near the eastern or western margin of the Siberia. The paper examines features of sulfide Cu-Ni mineralization in dolerites of the Kengede and East Anabar dyke swarms and discusses potential Cu-Ni-sulfide mineralization linked to the Precambrian mafic dyke swarms of different ages in the north-east of the Siberia.Π’ ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Анабарского Ρ‰ΠΈΡ‚Π° Π² сСвСрной части Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСны позднСдокСмбрийскиС Π±Π°Π·ΠΈΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ разновозрастныС Π΄Π°ΠΉΠΊΠΎΠ²Ρ‹Π΅ Ρ€ΠΎΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ направлСния. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводятся Π½ΠΎΠ²Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ составу, ΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ ΠΈ U-Pb Π΄Π°Ρ‚ΠΈΡ€ΠΎΠ²ΠΊΠ°ΠΌ Π΄Π°Π΅ΠΊ КСнгСдинского роя. Π’Ρ€ΠΈ Π½ΠΎΠ²Ρ‹Ρ… возраста ΠΏΠΎ Π±Π°Π΄Π΄Π΅Π»Π΅ΠΈΡ‚Ρƒ (1496Β±7, 1494Β±3 ΠΈ 1494Β±5 ΠΌΠ»Π½ Π»Π΅Ρ‚) ΠΈΠ· Ρ‚Ρ€Π΅Ρ… Π΄Π°Π΅ΠΊ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ КСнгСдинский Ρ€ΠΎΠΉ Π΄Π°Π΅ΠΊ являСтся Ρ‡Π°ΡΡ‚ΡŒΡŽ ΠšΡƒΠΎΠ½Π°ΠΌΡΠΊΠΎΠΉ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΉ магматичСской ΠΏΡ€ΠΎΠ²ΠΈΠ½Ρ†ΠΈΠΈ (КМП). Π Π°Π½Π΅Π΅ выдСлСнная ΠšΡƒΠΎΠ½Π°ΠΌΡΠΊΠ°Ρ КМП простираСтся Π½Π° 700 ΠΊΠΌ ΠΎΡ‚ Анабарского Ρ‰ΠΈΡ‚Π° Π΄ΠΎ ОлСнСкского поднятия Π² сСвСрной части Бибирской ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ связана с синхронными Π΄Π°ΠΉΠΊΠ°ΠΌΠΈ ΠΈ силлами ΠΊΡ€Π°Ρ‚ΠΎΠ½ΠΎΠ² Π‘Π°Π½-Ѐранциско ΠΈ Конго. Π’Π½ΠΎΠ²ΡŒ Π΄Π°Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ КСнгСдинский Ρ€ΠΎΠΉ располоТСн ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π² 50 ΠΊΠΌ юТнСС ΠΎΡ‚ ΠšΡƒΠΎΠ½Π°ΠΌΡΠΊΠΎΠ³ΠΎ роя Π΄Π°Π΅ΠΊ (1501Β±3 ΠΌΠ»Π½ Π»Π΅Ρ‚), ΠΈ идСнтификация этих Π΄Π²ΡƒΡ… ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡΡƒΠ±ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°ΠΉΠΊΠΎΠ²Ρ‹Ρ… Ρ€ΠΎΠ΅Π² ΠšΡƒΠΎΠ½Π°ΠΌΡΠΊΠΎΠΉ КМП ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΡŽΡŽ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½ΠΎΠ³ΠΎ плюма располагался вдоль экстраполированного Ρ‚Ρ€Π΅Π½Π΄Π° Π΄Π°Π΅ΠΊ Π²Π±Π»ΠΈΠ·ΠΈ восточной ΠΈΠ»ΠΈ Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ ΠΎΠΊΡ€Π°ΠΈΠ½Ρ‹ Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π°. Π’ связи с этим Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ особСнности ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½ΠΎΠΉ Cu-Ni-ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π² Π΄ΠΎΠ»Π΅Ρ€ΠΈΡ‚Π°Ρ… КСнгСдинского ΠΈ Восточно- Анабарского Π΄Π°ΠΉΠΊΠΎΠ²Ρ‹Ρ… Ρ€ΠΎΠ΅Π² ΠΈ обсуТдаСтся ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Cu-Ni-ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½ΠΎΠ΅ ΠΎΡ€ΡƒΠ΄Π΅Π½Π΅Π½ΠΈΠ΅, связанноС с разновозрастными докСмбрийскими роями мафичСских Π΄Π°Π΅ΠΊ Π½Π° сСвСро-востокС Бибирской ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹

    The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks

    Get PDF
    Β© 2015.A new large igneous province (LIP), the 1501 Β± 3 Ma Kuonamka LIP, extends across 700 km of northern Siberia and is linked with coeval dikes and sills in the formerly attached Sao Francisco craton (SFC)-Congo craton to yield a short-duration event 2000 km across. The age of the Kuonamka LIP can be summarized as 1501 Β± 3 Ma (95% confidence), based on 7 U-Pb ID-TIMS ages (6 new herein) from dolerite dikes and sills across the Anabar shield and within western Riphean cover rocks for a distance of 270 km. An additional sill yielded a SIMS (CAMECA) age of 1483 Β± 17 Ma and sill in the Olenek uplift several hundred kilometers farther east, a previous SIMS (SHRIMP) age of ca. 1473 Ma was obtained on a sill; both SIMS ages are within the age uncertainty of the ID-TIMS ages. Geochemical data indicate a tholeiitic basalt composition with low MgO (4-7 wt%) within-plate character based on trace element classification diagrams and source between E-MORB and OIB with only minor contamination from crust or metasomatized lithospheric mantle. Two subgroups are distinguished: Group 1 has gently sloping LREE ((La/Sm)PM = 1.9) and HREE ((Gd/Yb)PM = 1.8) patterns, slightly negative Sr and moderate TiO2 (2.2 wt%), and Group 2 has steeper LREE ((La/Sm)PM = 2.3) and HREE ((Gd/Yb)PM = 2.3), strong negative Sr anomaly, is higher in TiO2 (2.7 wt%), and is transitional from tholeiitic to weakly alkaline in composition. The slight differences in REE slopes are consistent with Group 2 on average melting at deeper levels. Proposed reconstructions of the Kuonamka LIP with 1500 Ma magmatism of the SFC-Congo craton are supported by a geochemical comparison. Specifically, the chemistry of the Chapada Diamantina and Curaga dikes of the SFC can be linked to that of Groups 1 and 2, respectively, of the Kuonamka LIP and are consistent with a common mantle source between EMORB and OIB and subsequent differentiation history. However, the coeval Humpata sills and dikes of the Angola block of the Congo craton represent a different magma batch

    Π”ΠžΠ“ΠžΠ‘ΠŸΠ˜Π’ΠΠ›Π¬ΠΠΠ― Π›Π•Π’ΠΠ›Π¬ΠΠžΠ‘Π’Π¬ ОВ ΠžΠ‘Π’Π ΠžΠ“Πž ИНЀАРКВА ΠœΠ˜ΠžΠšΠΠ Π”Π И Π’ΠžΠ—ΠœΠžΠ–ΠΠ«Π• ПУВИ Π•Π• Π‘ΠΠ˜Π–Π•ΠΠ˜Π―

    Get PDF
    Purpose. The aim is to analyze the occurrence of pre-hospital mortality from acute myocardial infarction inTomskin 27-years of observation and to develop recommendations for reducing mortality.Materials and methods. The results of the analysis of 6 076 cases of deaths from acute myocardial infarction in the prehospital setting, registered in the course of research on the WHO program Β«Register of acute myocardial infarctionΒ» in the period from 1984 to 2010.Β Results. It is shown that during the analyzed period of time the level of pre-hospital mortality did not change. Throughout the 27year observation period, the figure was higher in men and in patients younger than 60 years. In the vast majority of deaths from myocardial infarction in the prehospital setting was sudden, significantly reduced the efficiency of the current system in the medical care of patients with acute coronary disease.Conclusion. The most effective in reducing prehospital mortality associated with the event are mandatory and full prophylactic medical examination of patients with cardiovascular disease, in order to conduct an effective secondary prevention of coronary heart disease and acute myocardial infarction, and also to identify individuals at high risk for sudden cardiac death.ЦСль. ДинамичСский Π°Π½Π°Π»ΠΈΠ· случаСв Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΎΡ‚ острого ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π² ВомскС Π·Π° 27-Π»Π΅Ρ‚Π½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСния ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 6 076 случаСв Π³ΠΈΠ±Π΅Π»ΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚ острого ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π½Π° Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ этапС, зарСгистрированных Π² Ρ…ΠΎΠ΄Π΅ провСдСния исслСдования ΠΏΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ Π’ΠžΠ— «РСгистр острого ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°Β» Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1984 ΠΏΠΎ 2010 Π³ΠΎΠ΄.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ Π·Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ практичСски Π½Π΅ измСнился. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ всСго 27-Π»Π΅Ρ‚Π½Π΅Π³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° наблюдСний Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ Π±Ρ‹Π» Π²Ρ‹ΡˆΠ΅ Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½ ΠΈ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»ΠΎΠΆΠ΅ 60 Π»Π΅Ρ‚. Π’ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΡΠΌΠ΅Ρ€Ρ‚ΡŒ ΠΎΡ‚ ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π½Π° Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ этапС Π±Ρ‹Π»Π° Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сниТало ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π² Π³ΠΎΡ€ΠΎΠ΄Π΅ систСмы мСдицинской ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ с острой ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. НаиболСС эффСктивными Π² ΠΏΠ»Π°Π½Π΅ сниТСния Π΄ΠΎΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ мСроприятия, связанныС с ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½ΠΎΠΉ диспансСризациСй ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с сСрдСчно-сосудистыми заболСваниями с Ρ†Π΅Π»ΡŒΡŽ провСдСния эффСктивной Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ Π˜Π‘Π‘ ΠΈ острого ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ выявлСния Π»ΠΈΡ† высокого риска Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ сСрдСчной смСрти.

    Sulfides of the Modern Kamchatka Hydrothermal Systems

    Get PDF
    ABSTRACT Sulfides pyrite, melnikovite-pyrite, marcasite, sphalerite, chalcopyrite, galena, cinnabar, coloradoite, metacinnabar are precipitating at the modern geothermal systems of Kamchatka: Kireunsky, Dvukhyurtochny and Apapel&apos;sky in Central Kamchatka, Vilyuchinsky and Mutnovsky in Southern Kamchatka. Ore deposits are spatially associated with hydrothermal springs. Pyrite is the most common mineral precipitated at the discharge of hydrothermal style. It varies in mode of occurrence, size, inner structure, chemical composition and microstructure. Frequently pyrite occurs as framboids, idiomorphic crystals and their aggregates. By chemical composition, two varieties of pyrite are observed: homogeneous and heterogeneous. Heterogeneity of composition is due to impurities of As, Cu, Sb, Hg and Ag. Au as impurity in pyrite was relieved only in pyrite from Voinovsky hot springs in Southern Kamchatka. Cinnabar is the next most common occurring mineral at the modern hydrothermal systems in Kamchatka. Chalcopyrite, galena, sphalerite and gold are rare minerals. The modern hydrothermal systems in Kamchatka provide the opportunity to study sulfide typomorphism and physico-chemical conditions of the deposition mechanism. We suppose that some of them are the elements of the long-life ore generating hydrothermal systems

    РадиомичСский Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² ΠΊΠ°Ρ€Π΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ: возмоТности пСрспСктивы примСнСния: ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

    Get PDF
    The majority of modern biomedical research is aimed at personifying the diagnosis and treatment of various diseases. An individual approach can be implemented using radiomics β€” the latest radiation diagnostics associated with the extraction of a large number (from hundreds to several thousand) of additional quantitative indicators from medical images using specialized software. The method is actively used in oncology to identify radiochemoresistant tumor zones, as well as non-invasive determination of the phenotype and genotype of the neoplasm. At the same time, the prospects for the application and clinical significance of this approach in cardiology have not yet been determined and have been the subject of active research in recent years. In this regard, the purpose of this review was to collect information from available databases and assess the degree of knowledge of the problem of radiomic analysis of heart images using various radiation modalities, as well as to determine the prospects for using this approach in clinical practice.Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ соврСмСнных биомСдицинских исслСдований Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π½Π° ΠΏΠ΅Ρ€ΡΠΎΠ½ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ диагностики ΠΈ лСчСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΌΠΎΠΆΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ€Π°Π΄ΠΈΠΎΠΌΠΈΠΊΡƒ β€” новСйшСС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностики, связанноС с ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ большого количСства (ΠΎΡ‚ сотСн Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… тысяч) Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… количСствСнных ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΈΠ· мСдицинских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΡƒΡ‚Π΅ΠΌ использования спСциализированного ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния. ΠœΠ΅Ρ‚ΠΎΠ΄ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ для выявлСния Ρ€Π°Π΄ΠΈΠΎ-химиорСзистСнтных Π·ΠΎΠ½ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ опрСдСлСния Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° ΠΈ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° новообразования. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя пСрспСктивы примСнСния ΠΈ клиничСская Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π² ΠΊΠ°Ρ€Π΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ исслСдования Π² послСдниС Π³ΠΎΠ΄Ρ‹. Π’ связи с этим Ρ†Π΅Π»ΡŒΡŽ прСдставлСнного ΠΎΠ±Π·ΠΎΡ€Π° явился сбор ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ· доступных Π±Π°Π· Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° стСпСни изучСнности ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ радиомичСского Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ сСрдца ΠΏΡ€ΠΈ использовании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π»ΡƒΡ‡Π΅Π²Ρ‹Ρ… ΠΌΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСрспСктив использования ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅
    corecore