309 research outputs found

    Superconductivity and superconducting order parameter phase fluctuations in a weakly doped antiferromagnet

    Full text link
    The superconducting properties of a recently proposed phenomenological model for a weakly doped antiferromagnet are analyzed, taking into account fluctuations of the phase of the order parameter. In this model, we assume that the doped charge carriers can't move out of the antiferromagnetic sublattice they were introduced. This case corresponds to the free carrier spectra with the maximum at k=(±π/2,±π/2){\bf k}=(\pm \pi /2 ,\pm \pi /2), as it was observed in ARPES experiments in some of the cuprates in the insulating state [1]. The doping dependence of the superconducting gap and the temperature-carrier density phase diagram of the model are studied in the case of the dx2y2d_{x^{2}-y^{2}} pairing symmetry and different values of the effective coupling. A possible relevance of the results to the experiments on high-temperature superconductors is discussed.Comment: 16 pages, 4 figure

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic

    Formation of d-wave superconducting order in a randomly doped lattice

    Full text link
    We consider the interplay between superconducting coupling and dopant impurity scattering of charge carriers in planar square lattice systems and examine physical conditions (doping level, temperature, local symmetry of coupling and scattering potentials) necessary in this model system to obtain a d-wave superconducting order, like that observed in real doped cuprate HTSC materials. Using the Lifshitz model for the disorder introduced into system by dopants, we analyze also the non-uniform structure of such d-wave parameter, including both its magnitude and phase variation. The results indicate that d-wave superconductivity turns possible in a doped metal until it can be destroyed at too high doping levels.Comment: 22 pages, 2 figure

    Low-temperature orientational order and possible domain structures in C(_{60}) fullerite

    Full text link
    Based on a simple model for ordering of hexagons on square planar lattice, an attempt has been made to consider possible structure of C(_{60}) fullerite in its low temperature phase. It is shown that hexagons, imitating fullerens oriented along (C_{3}) axes of \emph{sc} lattice, can be ordered into an ideal structure with four non-equivalent molecules in unit cell. Then the energy degeneracy for each hexagon rotations by (\pi /3) around its (C_{3}) axis leaves the translational and orientational order in this structure, but leads to a random distribution of (\pi /3) rotations and hence to {}``averaged{}'' unit cell with two molecules. However the most relevant structural defects are not these intrinsic \char`\"{}misorientations\char`\"{} but certain walls between the domains with different sequencies of the above-mentioned two (non-ideal) sublattices. Numeric estimates have been made for the anisotropic inter-molecular potential showing that the anisotropy is noticeably smaller for molecules in walls than in domains
    corecore