53 research outputs found

    Inhomogeneous ground state and the coexistence of two length scales near phase transitions in real solids

    Full text link
    Real crystals almost unavoidably contain a finite density of dislocations. We show that this generic type of long--range correlated disorder leads to a breakdown of the conventional scenario of critical behavior and standard renormalization group techniques based on the existence of a simple, homogeneous ground state. This breakdown is due to the appearance of an inhomogeneous ground state that changes the character of the phase transition to that of a percolative phenomenon. This scenario leads to a natural explanation for the appearance of two length scales in recent high resolution small-angle scattering experiments near magnetic and structural phase transitions.Comment: 4 pages, RevTex, no figures; also available from http://www.tp3.ruhr-uni-bochum.de/archive/tpiii_archive.htm

    Critical Behaviour of 3D Systems with Long-Range Correlated Quenched Defects

    Full text link
    A field-theoretic description of the critical behaviour of systems with quenched defects obeying a power law correlations xa\sim |{\bf x}|^{-a} for large separations x{\bf x} is given. Directly for three-dimensional systems and different values of correlation parameter 2a32\leq a \leq 3 a renormalization analysis of scaling function in the two-loop approximation is carried out, and the fixed points corresponding to stability of the various types of critical behaviour are identified. The obtained results essentially differ from results evaluated by double ϵ,δ\epsilon, \delta - expansion. The critical exponents in the two-loop approximation are calculated with the use of the Pade-Borel summation technique.Comment: Submitted to J. Phys. A, Letter to Editor 9 pages, 4 figure

    Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization-group approximation

    Full text link
    The critical thermodynamics of the two-dimensional N-vector cubic and MN models is studied within the field-theoretical renormalization-group (RG) approach. The beta functions and critical exponents are calculated in the five-loop approximation and the RG series obtained are resummed using the Borel-Leroy transformation combined with the generalized Pad\'e approximant and conformal mapping techniques. For the cubic model, the RG flows for various N are investigated. For N=2 it is found that the continuous line of fixed points running from the XY fixed point to the Ising one is well reproduced by the resummed RG series and an account for the five-loop terms makes the lines of zeros of both beta functions closer to each another. For the cubic model with N\geq 3, the five-loop contributions are shown to shift the cubic fixed point, given by the four-loop approximation, towards the Ising fixed point. This confirms the idea that the existence of the cubic fixed point in two dimensions under N>2 is an artifact of the perturbative analysis. For the quenched dilute O(M) models (MNMN models with N=0) the results are compatible with a stable pure fixed point for M\geq1. For the MN model with M,N\geq2 all the non-perturbative results are reproduced. In addition a new stable fixed point is found for moderate values of M and N.Comment: 26 pages, 3 figure

    The theoretical study of the jump-like motion of the plane domain wall in ferroelectric

    Full text link
    The research was made possible in part by the Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011), by RFBR (Grant 13-02-01391-а) and by Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006)

    Explicit Renormalization Group for D=2 random bond Ising model with long-range correlated disorder

    Full text link
    We investigate the explicit renormalization group for fermionic field theoretic representation of two-dimensional random bond Ising model with long-range correlated disorder. We show that a new fixed point appears by introducing a long-range correlated disorder. Such as the one has been observed in previous works for the bosonic (ϕ4\phi^4) description. We have calculated the correlation length exponent and the anomalous scaling dimension of fermionic fields at this fixed point. Our results are in agreement with the extended Harris criterion derived by Weinrib and Halperin.Comment: 5 page

    Weak quenched disorder and criticality: resummation of asymptotic(?) series

    Full text link
    In these lectures, we discuss the influence of weak quenched disorder on the critical behavior in condensed matter and give a brief review of available experimental and theoretical results as well as results of MC simulations of these phenomena. We concentrate on three cases: (i) uncorrelated random-site disorder, (ii) long-range-correlated random-site disorder, and (iii) random anisotropy. Today, the standard analytical description of critical behavior is given by renormalization group results refined by resummation of the perturbation theory series. The convergence properties of the series are unknown for most disordered models. The main object of these lectures is to discuss the peculiarities of the application of resummation techniques to perturbation theory series of disordered models.Comment: Lectures given at the Second International Pamporovo Workshop on Cooperative Phenomena in Condensed Matter (28th July - 7th August 2001, Pamporovo, Bulgaria). 51 pages, 12 figures, 1 style files include

    Chiral critical behavior in two dimensions from five-loop renormalization-group expansions

    Full text link
    We analyse the critical behavior of two-dimensional N-vector spin systems with noncollinear order within the five-loop renormalization-group approximation. The structure of the RG flow is studied for different N leading to the conclusion that the chiral fixed point governing the critical behavior of physical systems with N = 2 and N = 3 does not coincide with that given by the 1/N expansion. We show that the stable chiral fixed point for NNN \le N^*, including N = 2 and N = 3, turns out to be a focus. We give a complete characterization of the critical behavior controlled by this fixed point, also evaluating the subleading crossover exponents. The spiral-like approach of the chiral fixed point is argued to give rise to unusual crossover and near-critical regimes that may imitate varying critical exponents seen in numerous physical and computer experiments.Comment: 17 pages, 12 figure

    The N-component Ginzburg-Landau Hamiltonian with cubic anisotropy: a six-loop study

    Full text link
    We consider the Ginzburg-Landau Hamiltonian with a cubic-symmetric quartic interaction and compute the renormalization-group functions to six-loop order in d=3. We analyze the stability of the fixed points using a Borel transformation and a conformal mapping that takes into account the singularities of the Borel transform. We find that the cubic fixed point is stable for N>N_c, N_c = 2.89(4). Therefore, the critical properties of cubic ferromagnets are not described by the Heisenberg isotropic Hamiltonian, but instead by the cubic model at the cubic fixed point. For N=3, the critical exponents at the cubic and symmetric fixed points differ very little (less than the precision of our results, which is 1\lesssim 1% in the case of γ\gamma and ν\nu). Moreover, the irrelevant interaction bringing from the symmetric to the cubic fixed point gives rise to slowly-decaying scaling corrections with exponent ω2=0.010(4)\omega_2=0.010(4). For N=2, the isotropic fixed point is stable and the cubic interaction induces scaling corrections with exponent ω2=0.103(8)\omega_2 = 0.103(8). These conclusions are confirmed by a similar analysis of the five-loop ϵ\epsilon-expansion. A constrained analysis which takes into account that Nc=2N_c = 2 in two dimensions gives Nc=2.87(5)N_c = 2.87(5).Comment: 29 pages, RevTex, new refs added, Phys. Rev. B in pres

    Fluctuating Stripes in Strongly Correlated Electron Systems and the Nematic-Smectic Quantum Phase Transition

    Full text link
    We discuss the quantum phase transition between a quantum nematic metallic state to an electron metallic smectic state in terms of an order-parameter theory coupled to fermionic quasiparticles. Both commensurate and incommensurate smectic (or stripe) cases are studied. Close to the quantum critical point (QCP), the spectrum of fluctuations of the nematic phase has low-energy ``fluctuating stripes''. We study the quantum critical behavior and find evidence that, contrary to the classical case, the gauge-type of coupling between the nematic and smectic is irrelevant at this QCP. The collective modes of the electron smectic (or stripe) phase are also investigated. The effects of the low-energy bosonic modes on the fermionic quasiparticles are studied perturbatively, for both a model with full rotational symmetry and for a system with an underlying lattice, which has a discrete point group symmetry. We find that at the nematic-smectic critical point, due to the critical smectic fluctuations, the dynamics of the fermionic quasiparticles near several points on the Fermi surface, around which it is reconstructed, are not governed by a Landau Fermi liquid theory. On the other hand, the quasiparticles in the smectic phase exhibit Fermi liquid behavior. We also present a detailed analysis of the dynamical susceptibilities in the electron nematic phase close to this QCP (the fluctuating stripe regime) and in the electronic smectic phase.Comment: 34 pages, 5 figure. An error in the calculation of fermion self-energy correction in the smectic phase was corrected, with updated Eq. (7.5) and Eq. (E3) and Table
    corecore