8,331 research outputs found

    Critical Dynamics of a Two-dimensional Superfluid near a Non-Thermal Fixed Point

    Full text link
    Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately re-thermalizing, the system approaches a meta-stable transient state, characterized as a non-thermal fixed point. A focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the non-thermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the vortex-density decay are found and discussed in terms of a vortex binding-unbinding transition and a kinetic description of vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the non-thermal fixed point in a reduced phase space is developed.Comment: 11 pages, 13 figures; PRA versio

    Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length

    Full text link
    We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms reaches the critical value, ceases and turns to expansion when the density of the collapsing cloud becomes so high that the recombination losses dominate over attractive interparticle interaction. As a result, we obtain a sequence of collapses, each of them followed by dynamic oscillations of the condensate. In every collapse the 3-body recombination burns only a part of the condensate, and the number of Bose-condensed atoms always remains finite. However, it can comparatively slowly decrease after the collapse, due to the transfer of the condensate particles to the above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure

    Phase diagram of the Kohn-Luttinger superconducting state for bilayer graphene

    Full text link
    The effect of the intersite and interplane Coulomb interactions between the Dirac fermions on the formation of the Kohn-Luttinger superconductivity in bilayer doped graphene is studied disregarding the effects of the van der Waals potential of the substrate and both magnetic and non-magnetic impurities. The phase diagram determining the boundaries of superconductive domains with different types of symmetry of the order parameter is built using the extended Hubbard model in the Born weak-coupling approximation with allowance for the intratomic, interatomic, and interlayer Coulomb interactions between electrons. It is shown that the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction inclusively and an account for the long-range intraplane Coulomb interactions significantly affect the competition between the superconducting f−f-, p+ip−p+ip-, and d+id−d+id-wave pairings. It is demonstrated that the account for the interplane Coulomb interaction enhances the critical temperature of the transition to the superconducting phase.Comment: 10 pages, 7 figure
    • …
    corecore