16,781 research outputs found

    Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms

    Full text link
    By incorporating the zero-point energy contribution we derive simple and accurate extensions of the usual Thomas-Fermi (TF) expressions for the ground-state properties of trapped Bose-Einstein condensates that remain valid for an arbitrary number of atoms in the mean-field regime. Specifically, we obtain approximate analytical expressions for the ground-state properties of spherical, cigar-shaped, and disk-shaped condensates that reduce to the correct analytical formulas in both the TF and the perturbative regimes, and remain valid and accurate in between these two limiting cases. Mean-field quasi-1D and -2D condensates appear as simple particular cases of our formulation. The validity of our results is corroborated by an independent numerical computation based on the 3D Gross-Pitaevskii equation.Comment: 5 pages, 3 figures. Final version published in Phys. Rev.

    Three-dimensional gap solitons in Bose-Einstein condensates supported by one-dimensional optical lattices

    Full text link
    We study fundamental and compound gap solitons (GSs) of matter waves in one-dimensional (1D) optical lattices (OLs) in a three-dimensional (3D) weak-radial-confinement regime, which corresponds to realistic experimental conditions in Bose-Einstein condensates (BECs). In this regime GSs exhibit nontrivial radial structures. Associated with each 3D linear spectral band exists a family of fundamental gap solitons that share a similar transverse structure with the Bloch waves of the corresponding linear band. GSs with embedded vorticity mm may exist \emph{inside} bands corresponding to other values of mm. Stable GSs, both fundamental and compound ones (including vortex solitons), are those which originate from the bands with lowest axial and radial quantum numbers. These findings suggest a scenario for the experimental generation of robust GSs in 3D settings.Comment: 5 pages, 5 figures; v2: matches published versio

    Exploring singlet deflection of gauge mediation

    Full text link
    We embed the Next-to Minimal Supersymmetric Standard Model into gauge mediation of supersymmetry breaking and study the phenomenology of scenarios where the gauge-mediation contributions to soft parameters are deflected by superpotential interactions of the gauge singlet with the messenger fields and the Higgs doublets. This kind of models provide a satisfactory solution to the mu-b_mu problem of gauge mediation, compatible with the adequate pattern of electroweak symmetry breaking and a realistic spectrum with supersymmetric partners at the TeV scale without requiring a significant fine tuning.Comment: Latex 18 pages, 4 eps figures. Minor corrections, version published in Phys. Rev.

    Dynamical evolution of a doubly-quantized vortex imprinted in a Bose-Einstein Condensate

    Full text link
    The recent experiment by Y. Shin \emph{et al.} [Phys. Rev. Lett. \textbf{93}, 160406 (2004)] on the decay of a doubly quantized vortex imprinted in 23^{23}% Na condensates is analyzed by numerically solving the Gross-Pitaevskii equation. Our results, which are in very good quantitative agreement with the experiment, demonstrate that the vortex decay is mainly a consequence of dynamical instability. Despite apparent contradictions, the local density approach is consistent with the experimental results. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that, for large condensates, the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate, regardless of its size.Comment: 5 pages, 4 figure

    Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates

    Full text link
    By applying the standard adiabatic approximation and using the accurate analytical expression for the corresponding local chemical potential obtained in our previous work [Phys. Rev. A \textbf{75}, 063610 (2007)] we derive an effective 1D equation that governs the axial dynamics of mean-field cigar-shaped condensates with repulsive interatomic interactions, accounting accurately for the contribution from the transverse degrees of freedom. This equation, which is more simple than previous proposals, is also more accurate. Moreover, it allows treating condensates containing an axisymmetric vortex with no additional cost. Our effective equation also has the correct limit in both the quasi-1D mean-field regime and the Thomas-Fermi regime and permits one to derive fully analytical expressions for ground-state properties such as the chemical potential, axial length, axial density profile, and local sound velocity. These analytical expressions remain valid and accurate in between the above two extreme regimes. Following the same procedure we also derive an effective 2D equation that governs the transverse dynamics of mean-field disk-shaped condensates. This equation, which also has the correct limit in both the quasi-2D and the Thomas-Fermi regime, is again more simple and accurate than previous proposals. We have checked the validity of our equations by numerically solving the full 3D Gross-Pitaevskii equation.Comment: 11 pages, 7 figures; Final version published in Phys. Rev. A; Manuscript put in the archive and submitted to Phys. Rev. A on 17 July 200

    Evaluation of the Evacuation of Essential Buildings: Interaction of Structural and Human Behaviour through Nonlinear Time-History Analysis and Agent-Based Modelling

    Get PDF
    In this article, a performance assessment of the evacuation system is established for educational buildings. Structural and geotechnical information of the building is collected and introduced into a database. A similar procedure was realized for the information related to the occupants. Using this information, a) the structural fragility and localized collapse were determined and b) the interaction of the person with the partial collapse was established. For the first aspect, nonlinear time history was used, and for the second, the agent-based modeling was applied to recreate the reaction of people that face the micro collapse. Therefore, the important results of this evaluation are: 1) To localize collapsed beans and columns that make inoperable evacuation routes, 2) to localize bottleneck areas that people concentration during evacuation, and 3) quantification of affected people, in terms of persons caught up in the building that cannot evacuate
    • …
    corecore