3,155 research outputs found
Penetrators (penetrating sondes) and new possibilities for study of the planets
The fields of possible use of penetrators in space research are considered. A survey of the condition of development and plans for use of penetrators abroad is presented and an analysis is given of the significance of scientific problems when probing planets
Base pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium
We study the nonlinear dynamics of a protein-DNA molecular system by treating
DNA as a set of two coupled linear chains and protein in the form of a single
linear chain sliding along the DNA at the physiological temperature in a
viscous medium. The nonlinear dynamics of the above molecular system in general
is governed by a perturbed nonlinear Schr\"{o}dinger equation. In the
non-viscous limit, the equation reduces to the completely integrable nonlinear
Schr\"{o}dinger (NLS) equation which admits N-soliton solutions. The soliton
excitations of the DNA bases make localized base pair opening and travel along
the DNA chain in the form of a bubble. This may represent the bubble generated
during the transcription process when an RNA-polymerase binds to a promoter
site in the DNA double helical chain. The perturbed NLS equation is solved
using a perturbation theory by treating the viscous effect due to surrounding
as a weak perturbation and the results show that the viscosity of the solvent
in the surrounding damps out the amplitude of the soliton.Comment: 4. Submitted to Phys. Rev.
Atomic States Entanglement in Carbon Nanotubes
The entanglement of two atoms (ions) doped into a carbon nanotube has been
investigated theoretically. Based on the photon Green function formalism for
quantizing electromagnetic field in the presence of carbon nanotubes,
small-diameter metallic nanotubes are shown to result in a high degree of the
two-qubit atomic entanglement for long times due to the strong atom-field
coupling.Comment: 4 pages, 2 figure
The oxygen isotope effect on critical temperature in superconducting copper oxides
The isotope effect provided a crucial key to the development of the BCS
(Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for
conventional superconductors. In superconducting cooper oxides (cuprates)
showing an unconventional type of superconductivity, the oxygen isotope effect
is very peculiar: the exponential coefficient strongly depends on doping level.
No consensus has been reached so far on the origin of the isotope effect in the
cuprates. Here we show that the oxygen isotope effect in cuprates is in
agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction
A Variational Approach to Nonlocal Exciton-Phonon Coupling
In this paper we apply variational energy band theory to a form of the
Holstein Hamiltonian in which the influence of lattice vibrations (optical
phonons) on both local site energies (local coupling) and transfers of
electronic excitations between neighboring sites (nonlocal coupling) is taken
into account. A flexible spanning set of orthonormal eigenfunctions of the
joint exciton-phonon crystal momentum is used to arrive at a variational
estimate (bound) of the ground state energy for every value of the joint
crystal momentum, yielding a variational estimate of the lowest polaron energy
band across the entire Brillouin zone, as well as the complete set of polaron
Bloch functions associated with this band. The variation is implemented
numerically, avoiding restrictive assumptions that have limited the scope of
previous assaults on the same and similar problems. Polaron energy bands and
the structure of the associated Bloch states are studied at general points in
the three-dimensional parameter space of the model Hamiltonian (electronic
tunneling, local coupling, nonlocal coupling), though our principal emphasis
lay in under-studied area of nonlocal coupling and its interplay with
electronic tunneling; a phase diagram summarizing the latter is presented. The
common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure
- …