394 research outputs found

    Fluidity Onset in Graphene

    Get PDF
    Viscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures. The transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector. The resistance decreases as the system goes deeper into the hydrodynamic regime. In a perfect darkness-before-daybreak manner, the interaction-dominated negative response is strongest at the transition to the quasiballistic regime. Our work provides the first demonstration of how the viscous fluid behavior emerges in an interacting electron system.Comment: 8pgs, 4fg

    Spectropolarimetric observations of cool DQ white dwarfs

    Get PDF
    Following our recent discovery of a new magnetic DQ white dwarf (WD) with CH molecular features, we report the results for the rest of the DQ WDs from our survey. We use high signal-to-noise spectropolarimetric data to search for magnetic fields in a sample of 11 objects. One object in our sample, WD1235+422, shows the signs of continuum circular polarization that is similar to some peculiar DQs with unidentified molecular absorption bands, but the low S/N and spectral resolution of these data make more observations necessary to reveal the true nature of this object

    Evidence of phi --> pi0 pi0 gamma and phi --> pi0 eta gamma decays in SND experiment at VEPP-2M

    Full text link
    Preliminary results on the study of e+e- --> phi(1020) --> pi0 pi0 gamma, eta pi0 gamma processes from SND experiment at VEPP-2M collider in Novosibirsk are presented. Branching ratios of rare radiative phi --> pi0 pi0 gamma and phi --> pi0 eta gamma decays are measured: B(phi --> pi0 pi0 gamma ) = (1.1 +- 0.2) * 10^-4 (invariant mass (pi0 pi0) < 800 MeV), B(phi --> eta pi0 gamma ) = (1.3 +- 0.5) * 10^-4.Comment: Talk at the HADRON97 conference, BNL, Aug 24-30 1997; LaTeX, 4 pages, 4 eps figure

    Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene

    Full text link
    The electronic properties of graphene superlattices have attracted intense interest that was further stimulated by the recent observation of novel many-body states at "magic" angles in twisted bilayer graphene (BLG). For very small ("marginal") twist angles of 0.1 deg, BLG has been shown to exhibit a strain-accompanied reconstruction that results in submicron-size triangular domains with the Bernal stacking. If the interlayer bias is applied to open an energy gap inside the domain regions making them insulating, marginally-twisted BLG is predicted to remain conductive due to a triangular network of chiral one-dimensional (1D) states hosted by domain boundaries. Here we study electron transport through this network and report giant Aharonov-Bohm oscillations persisting to temperatures above 100 K. At liquid helium temperatures, the network resistivity exhibits another kind of oscillations that appear as a function of carrier density and are accompanied by a sign-changing Hall effect. The latter are attributed to consecutive population of the flat minibands formed by the 2D network of 1D states inside the gap. Our work shows that marginally twisted BLG is markedly distinct from other 2D electronic systems, including BLG at larger twist angles, and offers a fascinating venue for further research.Comment: 11 pages, 8 figure
    corecore