5 research outputs found

    Cd<sup>2+</sup> Complexation with P(CH<sub>2</sub>OH)<sub>3</sub>, OP(CH<sub>2</sub>OH)<sub>3</sub>, and (HOCH<sub>2</sub>)<sub>2</sub>PO<sub>2</sub><sup>–</sup>: Coordination in Solution and Coordination Polymers

    No full text
    The coordination of Cd<sup>2+</sup> with P­(CH<sub>2</sub>OH)<sub>3</sub> (THP) in methanol was followed by <sup>31</sup>P and <sup>111</sup>Cd NMR techniques. A cadmium-to-phosphine coordination ratio of 1:3 has been established, and effective kinetic parameters have been calculated. Air oxidation of THP in the presence of CdCl<sub>2</sub> at room temperature produces coordination polymer <sup>3</sup><sub>∞</sub>[Cd<sub>3</sub>Cl<sub>6</sub>(OP­(CH<sub>2</sub>OH)<sub>3</sub>)<sub>2</sub>] (<b>1</b>). The same oxidation reaction at 70 °C gives another coordination polymer, <sub>∞</sub>[CdCl<sub>2</sub>(OP­(CH<sub>2</sub>OH)<sub>3</sub>)] (<b>2</b>). Complexes <b>1</b> and <b>2</b> are the first structurally characterized complexes featuring OP­(CH<sub>2</sub>OH)<sub>3</sub> as a ligand that acts as a linker between Cd atoms. The addition of NaBPh<sub>4</sub> to the reaction mixture gives coordination polymer <sub>∞</sub>[Na<sub>2</sub>CdCl<sub>2</sub>(O<sub>2</sub>P­(CH<sub>2</sub>OH)<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>] (<b>3</b>) with (HOCH<sub>2</sub>)<sub>2</sub>PO<sub>2</sub><sup>–</sup> as the ligand. Coordination polymers <b>1</b>–<b>3</b> have been characterized by X-ray analysis, elemental analysis, and IR spectroscopy

    Oxometalate- and Soft-Oxometalate-Based Hybrid Materials: From Synthesis to Catalytic Applications

    No full text
    corecore