231 research outputs found

    Evolution of kinklike fluctuations associated with ion pickup within reconnection outflows in the Earth's magnetotail

    Full text link
    Magnetic reconnection (MR) in Earth's magnetotail is usually followed by a systemwide redistribution of explosively released kinetic and thermal energy. Recently, multispacecraft observations from the THEMIS mission were used to study localized explosions associated with MR in the magnetotail so as to understand subsequent Earthward propagation of MR outbursts during substorms. Here we investigate plasma and magnetic field fluctuations/structures associated with MR exhaust and ion-ion kink mode instability during a well documented MR event. Generation, evolution and fading of kinklike oscillations are followed over a distance of 70 000 km from the reconnection site in the midmagnetotail to the more dipolar region near the Earth. We have found that the kink oscillations driven by different ion populations within the outflow region can be at least 25 000 km from the reconnection site.Comment: 11 pages, 4 figure

    Vacuum energy of the Bukhvostov-Lipatov model

    Get PDF
    Bukhvostov and Lipatov have shown that weakly interacting instantons and anti-instantons in the O(3)O(3) non-linear sigma model in two dimensions are described by an exactly soluble model containing two coupled Dirac fermions. We propose an exact formula for the vacuum energy of the model for twisted boundary conditions, expressing it through a special solution of the classical sinh-Gordon equation. The formula perfectly matches predictions of the standard renormalized perturbation theory at weak couplings as well as the conformal perturbation theory at short distances. Our results also agree with the Bethe ansatz solution of the model. A complete proof the proposed expression for the vacuum energy based on a combination of the Bethe ansatz techniques and the classical inverse scattering transform method is presented in the second part of this work [40].Comment: 28 pages, 10 figure

    Bukhvostov-Lipatov model and quantum-classical duality

    Full text link
    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3)O(3) non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.Comment: 49 pages, 8 figure

    Thin current sheets in the magnetotail at lunar distances: statistics of ARTEMIS observations

    Full text link
    The magnetotail current sheet's spatial configuration and stability control the onset of magnetic reconnection - the driving process for magnetospheric substorms. The near-Earth current sheet has been thoroughly investigated by numerous missions, whereas the midtail current sheet has not been adequately explored. This is especially the case for the long-term variation of its configuration in response to the solar wind. We present a statistical analysis of 1261 magnetotail current sheet crossings by the Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission orbiting the moon (X~-60 RE), collected during the entirety of Solar Cycle 24. We demonstrate that the magnetotail current sheet typically remains extremely thin, with a characteristic thickness comparable to the thermal ion gyroradius, even at such large distances from Earth's dipole. We also find that a substantial fraction (~one quarter) of the observed current sheets have a partially force-free magnetic field configuration, with a negligible contribution of the thermal pressure and a significant contribution of the magnetic field shear component to the pressure balance. Further, we quantify the impact of the changing solar wind driving conditions on the properties of the midtail around the lunar orbit. During active solar wind driving conditions, we observe an increase in the occurrence rate of thin current sheets, whereas quiet solar wind driving conditions seem to favor the formation of partially force-free current sheets

    Global and local disturbances in the magnetotail during reconnection

    Get PDF
    We examine Cluster observations of a reconnection event at <I>x</I><sub>GSM</sub>=−15.7 <I>R<sub>E</sub></I> in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in <I>B<sub>z</sub></I>, which are shown to be the Hall signature tilted in the <I>yz</I> plane with the current sheet

    On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95540/1/jgra21806.pd

    Pressure and intermittency in passive vector turbulence

    Full text link
    We investigate the scaling properties a model of passive vector turbulence with pressure and in the presence of a large-scale anisotropy. The leading scaling exponents of the structure functions are proven to be anomalous. The anisotropic exponents are organized in hierarchical families growing without bound with the degree of anisotropy. Nonlocality produces poles in the inertial-range dynamics corresponding to the dimensional scaling solution. The increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional ratios signals the persistence of anisotropy effects also in the inertial range.Comment: 4 pages, 1 figur
    • …
    corecore