11 research outputs found

    Generalized tight-binding transport model for graphene nanoribbon-based systems

    Get PDF
    An extended tight-binding model that includes up to third-nearest-neighbor hopping and a Hubbard mean-field interaction term is tested against ab initio local spin-density approximation results of band structures for armchair- and zigzag-edged graphene nanoribbons. A single tight-binding parameter set is found to accurately reproduce the ab initio results for both the armchair and zigzag cases. Transport calculations based on the extended tight-binding model faithfully reproduce the results of ab initio transport calculations of graphene nanoribbon-based systems.Peer reviewe

    Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models

    Get PDF
    The Baltic Sea is a highly frequented shipping area with busy shipping lanes close to densely populated regions. Exhaust emissions from ship traffic into the atmosphere do not only enhance air pollution, they also affect the Baltic Sea environment through acidification and eutrophication of marine waters and surrounding terrestrial ecosystems. As part of the European BONUS project SHEBA (Sustainable Shipping and Environment of the Baltic Sea region), the transport, chemical transformation and fate of atmospheric pollutants in the Baltic Sea region were simulated with three regional chemistry transport model (CTM) systems, CMAQ, EMEP/MSC-W and SILAM, with grid resolutions between 4 and 11&thinsp;km. The main goal was to quantify the effect that shipping emissions have on the regional air quality in the Baltic Sea region when the same shipping emission dataset but different CTMs are used in their typical set-ups. The performance of these models and the shipping contribution to the results of the individual models were evaluated for sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM2.5). Model results from the three CTMs for total air pollutant concentrations were compared to observations from rural and urban background stations of the AirBase monitoring network in the coastal areas of the Baltic Sea region. Observed PM2.5 in summer was underestimated strongly by CMAQ and to some extent by EMEP/MSC-W. Observed PM2.5 in winter was underestimated by SILAM. In autumn all models were in better agreement with observed PM2.5. The spatial average of the annual mean O3 in the EMEP/MSC-W simulation was ca. 20&thinsp;% higher compared to the other two simulations, which is mainly the consequence of using a different set of boundary conditions for the European model domain. There are significant differences in the calculated ship contributions to the levels of air pollutants among the three models. EMEP/MSC-W, with the coarsest grid, predicted weaker ozone depletion through NO emissions in the proximity of the main shipping routes than the other two models. The average contribution of ships to PM2.5 levels in coastal land areas is in the range of 3.1&thinsp;%–5.7&thinsp;% for the three CTMs. Differences in ship-related PM2.5 between the models are mainly attributed to differences in the schemes for inorganic aerosol formation. Differences in the ship-related elemental carbon (EC) among the CTMs can be explained by differences in the meteorological conditions, atmospheric transport processes and the applied wet-scavenging parameterizations. Overall, results from the present study show the sensitivity of the ship contribution to combined uncertainties in boundary conditions, meteorological data and aerosol formation and deposition schemes. This is an important step towards a more reliable evaluation of policy options regarding emission regulations for ship traffic and the planned introduction of a nitrogen emission control area (NECA) in the Baltic Sea and the North Sea in 2021.</p

    A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation

    Get PDF
    A major release of methane from the Nord Stream pipelines occurred in the Baltic Sea on 26 September 2022. Elevated levels of methane were recorded at many observational sites in northern Europe. While it is relatively straightforward to estimate the total emitted amount from the incidents (around 330 kt of methane), the detailed vertical and temporal distributions of the releases are needed for numerical simulations of the incident. Based on information from public media and basic physical concepts, we reconstructed vertical profiles and temporal evolution of the methane releases from the broken pipes and simulated subsequent transport of the released methane in the atmosphere. The parameterization for the initial rise of the buoyant methane plume has been validated with a set of large-eddy simulations by means of the UCLALES model. The estimated emission source was used to simulate the dispersion of the gas plume with the SILAM chemistry transport model. The simulated fields of the excess methane led to a noticeable increase in concentrations at several carbon-monitoring stations in the Baltic Sea region. Comparison of the simulated and observed time series indicated an agreement within a couple of hours between the timing of the plume arrival/departure at the stations with observed methane peaks. Comparison of absolute levels was quite uncertain. At most of the stations the magnitude of the observed and modeled peaks was comparable with the natural variability of methane concentrations. The magnitude of peaks at a few stations close to the release was well above natural variability; however, the magnitude of the peaks was very sensitive to minor uncertainties in the emission vertical profile and in the meteorology used to drive SILAM. The obtained emission inventory and the simulation results can be used for further analysis of the incident and its climate impact. They can also be used as a test case for atmospheric dispersion models.</p

    Anderson localization in two-dimensional graphene with short-range disorder: One-parameter scaling and finite-size effects

    No full text
    We study Anderson localization in graphene with short-range disorder using the real-space Kubo-Greenwood method implemented on graphics processing units. Two models of short-range disorder, namely, the Anderson on-site disorder model and the vacancy defect model, are considered. For graphene with Anderson disorder, localization lengths of quasi-one-dimensional systems with various disorder strengths, edge symmetries, and boundary conditions are calculated using the real-space Kubo-Greenwood formalism, showing excellent agreement with independent transfer matrix calculations and superior computational efficiency. Using these data, we demonstrate the applicability of the one-parameter scaling theory of localization length and propose an analytical expression for the scaling function, which provides a reliable method of computing the two-dimensional localization length. This method is found to be consistent with another widely used method which relates the two-dimensional localization length to the elastic mean free path and the semiclassical conductivity. Abnormal behavior at the charge neutrality point is identified and interpreted to be caused by finite-size effects when the system width is comparable to or smaller than the elastic mean free path. We also demonstrate the finite-size effect when calculating the two-dimensional conductivity in the localized regime and show that a renormalization group β function consistent with the one-parameter scaling theory can be extracted numerically. For graphene with vacancy disorder, we show that the proposed scaling function of localization length also applies. Last, we discuss some ambiguities in calculating the semiclassical conductivity around the charge neutrality point due to the presence of resonant states.Peer reviewe

    Electronic states in finite graphene nanoribbons: Effect of charging and defects

    No full text
    We study the electronic structure of finite armchair graphene nanoribbons using density-functional theory and the Hubbard model, concentrating on the states localized at the zigzag termini. We show that the energy gaps between end-localized states are sensitive to doping, and that in doped systems, the gap between the end-localized states decreases exponentially as a function of the ribbon length. Doping also quenches the antiferromagnetic coupling between the end-localized states leading to a spin-split gap in neutral ribbons. By comparing dI/dV maps calculated using the many-body Hubbard model, its mean-field approximation and density-functional theory, we show that the use of a single-particle description is justified for graphene π states in case spin properties are not the main interest. Furthermore, we study the effect of structural defects in the ribbons on their electronic structure. Defects at one ribbon terminus do not significantly modify the electronic states localized at the intact end. This provides further evidence for the interpretation of a multipeak structure in a recent scanning tunneling spectroscopy (STS) experiment resulting from inelastic tunneling processes [van der Lit et al., Nat. Commun. 4, 2023 (2013)]. Finally, we show that the hydrogen termination at the flake edges leaves identifiable fingerprints on the positive bias side of STS measurements, thus possibly aiding the experimental identification of graphene structures.Peer reviewe

    Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom

    No full text
    Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.Peer reviewe
    corecore