206 research outputs found

    Vacuum polarization induced by a uniformly accelerated charge

    Get PDF
    We consider a point charge fixed in the Rindler coordinates which describe a uniformly accelerated frame. We determine an integral expression of the induced charge density due to the vacuum polarization at the first order in the fine structure constant. In the case where the acceleration is weak, we give explicitly the induced electrostatic potential.Comment: 13 pages, latex, no figures, to appear in Int. J. Theor. Phys

    Pion gas viscosity at low temperature and density

    Get PDF
    By using Chiral Perturbation Theory and the Uehling-Uhlenbeck equation we compute the viscosity of a pion gas, in the low temperature and low density regime, in terms of the temperature, and the pion fugacity. The viscosity turns out to be proportional to the squared root of the temperature over the pion mass. Next to leading corrections are proportional to the temperature over the pion mass to the 3/2.Comment: 15 pages, 4 figures. RevTeX

    Thermal Effects in Low-Temperature QED

    Get PDF
    QED is studied at low temperature (TmT\ll m, where mm is the electron mass) and zero chemical potential. By integrating out the electron field and the nonzero bosonic Matsubara modes, we construct an effective three-dimensional field theory that is valid at distances R1/TR\gg1/T. As applications, we reproduce the ring-improved free energy and calculate the Debye mass to order e5e^5.Comment: 20 pages, 4 figures, revte

    Nuclear Isospin Diffusivity

    Full text link
    The isospin diffusion and other irreversible phenomena are discussed for a two-component nuclear Fermi system. The set of Boltzmann transport equations, such as employed for reactions, are linearized, for weak deviations of a system from uniformity, in order to arrive at nonreversible fluxes linear in the nonuniformities. Besides the diffusion driven by a concentration gradient, also the diffusion driven by temperature and pressure gradients is considered. Diffusivity, conductivity, heat conduction and shear viscosity coefficients are formally expressed in terms of the responses of distribution functions to the nonuniformities. The linearized Boltzmann-equation set is solved, under the approximation of constant form-factors in the distribution-function responses, to find concrete expressions for the transport coefficients in terms of weighted collision integrals. The coefficients are calculated numerically for nuclear matter, using experimental nucleon-nucleon cross sections. The isospin diffusivity is inversely proportional to the neutron-proton cross section and is also sensitive to the symmetry energy. At low temperatures in symmetric matter, the diffusivity is directly proportional to the symmetry energy.Comment: 35 pages, 1 table, 5 figures, accepted by PRC, (v3) changes in response to the referee's comments, discussion for isospin diffusion process in heavy-ion reactions, fig. 5 shows results from a two different isospin depndent uclear equation of state, and a new reference adde

    Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas

    Full text link
    Starting from the quantum kinetic equation for the non-condensate atoms and the generalized Gross-Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas at finite temperatures. We follow the standard Chapman-Enskog procedure, starting from a solution of the kinetic equation corresponding to the complete local equilibrium between the condensate and the non-condensate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equilibrium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the diffusive local equilibrium between the condensate and the non-condensate (recently considered by Zaremba, Nikuni and Griffin) can be described by four frequency-dependent second viscosity transport coefficients. We also derive explicit formulas for all the transport coefficients. These results are used to introduce two new characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.Comment: 26 pages, 3 postscript figures, submitted to PR

    Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields

    Full text link
    The equivalence of the covariant renormalization and the partial-wave renormaliz ation (PWR) approach is proven explicitly for the one-loop self-energy correction (SE) of a bound electron state in the presence of external perturbation potentials. No spurious correctio n terms to the noncovariant PWR scheme are generated for Coulomb-type screening potentia ls and for external magnetic fields. It is shown that in numerical calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment of the unphysical high-energy contribution. A method for performing the PWR utilizing the relativistic B-spline approach for the construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied for calculating QED corrections to the bound-electron gg-factor in H-like ions. Within the level of accuracy of about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.Comment: 22 pages, LaTeX, 1 figur

    Relaxation rates and collision integrals for Bose-Einstein condensates

    Full text link
    Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, G12\mathcal{G}^{12}, G22\mathcal{G}^{22}, and G31\mathcal{G}^{31}. All three collision integrals conserve momentum and energy during bogolon collisions, but only G22 \mathcal{G}^{22} conserves bogolon number. Previous works have considered the contribution of only two collision integrals, G22 \mathcal{G}^{22} and G12 \mathcal{G}^{12}. In this work, we show that the third collision integral G31 \mathcal{G}^{31} makes a significant contribution to the bogolon number relaxation rate and needs to be retained when computing relaxation properties of the BEC. We provide values of relaxation rates in a form that can be applied to a variety of dilute Bose-Einstein condensates.Comment: 18 pages, 4 figures, accepted by Journal of Low Temperature Physics 7/201

    Self-consistent solution for the polarized vacuum in a no-photon QED model

    Full text link
    We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced from no-photon QED. The associated functional is bounded from below. In the presence of an external field, a minimizer, if it exists, is interpreted as the polarized vacuum and it solves a self-consistent equation. In a recent paper math-ph/0403005, we proved the convergence of the iterative fixed-point scheme naturally associated with this equation to a global minimizer of the BDF functional, under some restrictive conditions on the external potential, the ultraviolet cut-off Λ\Lambda and the bare fine structure constant α\alpha. In the present work, we improve this result by showing the existence of the minimizer by a variational method, for any cut-off Λ\Lambda and without any constraint on the external field. We also study the behaviour of the minimizer as Λ\Lambda goes to infinity and show that the theory is "nullified" in that limit, as predicted first by Landau: the vacuum totally kills the external potential. Therefore the limit case of an infinite cut-off makes no sense both from a physical and mathematical point of view. Finally, we perform a charge and density renormalization scheme applying simultaneously to all orders of the fine structure constant α\alpha, on a simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge

    The Standard Model in Strong Fields: Electroweak Radiative Corrections for Highly Charged Ions

    Get PDF
    Electroweak radiative corrections to the matrix elements <ns1/2H^PNCnp1/2><ns_{1/2}|{\hat H}_{PNC}|n'p_{1/2}> are calculated for highly charged hydrogenlike ions. These matrix elements constitute the basis for the description of the most parity nonconserving (PNC) processes in atomic physics. The operator H^PNC{\hat H}_{PNC} represents the parity nonconserving relativistic effective atomic Hamiltonian at the tree level. The deviation of these calculations from the calculations valid for the momentum transfer q2=0q^{2}=0 demonstrates the effect of the strong field, characterized by the momentum transfer q2=me2q^{2}=m_{e}^{2} (mem_{e} is the electron mass). This allows for a test of the Standard Model in the presence of strong fields in experiments with highly charged ions.Comment: 27 LaTex page
    corecore