1,115 research outputs found
Phase Separation of a Fast Rotating Boson-Fermion Mixture in the Lowest-Landau-Level Regime
By minimizing the coupled mean-field energy functionals, we investigate the
ground-state properties of a rotating atomic boson-fermion mixture in a
two-dimensional parabolic trap. At high angular frequencies in the
mean-field-lowest-Landau-level regime, quantized vortices enter the bosonic
condensate, and a finite number of degenerate fermions form the
maximum-density-droplet state. As the boson-fermion coupling constant
increases, the maximum density droplet develops into a lower-density state
associated with the phase separation, revealing characteristics of a
Landau-level structure
Spin echo in spinor dipolar Bose-Einstein condensates
We theoretically propose and numerically realize spin echo in a spinor
Bose--Einstein condensate (BEC). We investigate the influence on the spin echo
of phase separation of the condensate. The equation of motion of the spin
density exhibits two relaxation times. We use two methods to separate the
relaxation times and hence demonstrate a technique to reveal magnetic
dipole--dipole interactions in spinor BECs.Comment: 4 pages, 5 figure
Transition to superfluid turbulence governed by an intrinsic parameter
Hydrodynamic flow in both classical and quantum fluids can be either laminar
or turbulent. To describe the latter, vortices in turbulent flow are modelled
with stable vortex filaments. While this is an idealization in classical
fluids, vortices are real topologically stable quantized objects in
superfluids. Thus superfluid turbulence is thought to hold the key to new
understanding on turbulence in general. The fermion superfluid 3He offers
further possibilities owing to a large variation in its hydrodynamic
characteristics over the experimentally accessible temperatures. While studying
the hydrodynamics of the B phase of superfluid 3He, we discovered a sharp
transition at 0.60Tc between two regimes, with regular behaviour at
high-temperatures and turbulence at low-temperatures. Unlike in classical
fluids, this transition is insensitive to velocity and occurs at a temperature
where the dissipative vortex damping drops below a critical limit. This
discovery resolves the conflict between existing high- and low-temperature
measurements in 3He-B: At high temperatures in rotating flow a vortex loop
injected into superflow has been observed to expand monotonically to a single
rectilinear vortex line, while at very low temperatures a tangled network of
quantized vortex lines can be generated in a quiescent bath with a vibrating
wire. The solution of this conflict reveals a new intrinsic criterion for the
existence of superfluid turbulence.Comment: Revtex file; 5 pages, 2 figure
Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling
In simulation of quantum turbulence within the Gross-Pitaevskii
equation we demonstrate that the large scale motions have a classical
Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy
accumulation with E(k) ~ const at k about the reciprocal mean intervortex
distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck
model of gradual eddy-wave crossover [J. Low Temp. Phys. 153, 140-161 (2008)],
further developed in the paper.Comment: (re)submitted to PRB: 5.5 pages, 4 figure
Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation
We study numerically the reconnection of quantized vortices and the
concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation.
Two quantized vortices reconnect following the process similar to classical
vortices; they approach, twist themselves locally so that they become
anti-parallel at the closest place, reconnect and leave separately.The
investigation of the motion of the singular lines where the amplitude of the
wave function vanishes in the vortex cores confirms that they follow the above
scenario by reconnecting at a point. This reconnection is not contradictory to
the Kelvin's circulation theorem, because the potential of the superflow field
becomes undefined at the reconnection point. When the locally anti-parallel
part of the vortices becomes closer than the healing length, it moves with the
velocity comparable to the sound velocity, emits the sound waves and leads to
the pair annihilation or reconnection; this phenomena is concerned with the
Cherenkov resonance. The vortices are broken up to smaller vortex loops through
a series of reconnection, eventually disappearing with the acoustic emission.
This may correspond to the final stage of the vortex cascade process proposed
by Feynman. The change in energy components, such as the quantum, the
compressible and incompressible kinetic energy is analyzed for each dynamics.
The propagation of the sound waves not only appears in the profile of the
amplitude of the wave function but also affects the field of its phase,
transforming the quantum energy due to the vortex cores to the kinetic energy
of the phase field.Comment: 11 pages, 16 figures, LaTe
Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence
The dynamics of quantized vortices in rotating He-B is investigated in
the low density (single-vortex) regime as a function of temperature. An abrupt
transition is observed at . Above this temperature the number of
vortex lines remains constant, as they evolve to their equilibrium positions.
Below this temperature the number of vortices increases linearly in time until
the vortex density has grown sufficiently for turbulence to switch on. On the
basis of numerical calculations we suggest a mechanism responsible for vortex
formation at low temperatures and identify the mutual friction parameter which
governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let
Quantum Turbulence in a Trapped Bose-Einstein Condensate
We study quantum turbulence in trapped Bose-Einstein condensates by
numerically solving the Gross-Pitaevskii equation. Combining rotations around
two axes, we successfully induce quantum turbulent state in which quantized
vortices are not crystallized but tangled. The obtained spectrum of the
incompressible kinetic energy is consistent with the Kolmogorov law, the most
important statistical law in turbulence.Comment: 4 pages, 4 figures, Physical Review A 76, 045603 (2007
Route to turbulence in a trapped Bose-Einstein condensate
We have studied a Bose-Einstein condensate of atoms under an
oscillatory excitation. For a fixed frequency of excitation, we have explored
how the values of amplitude and time of excitation must be combined in order to
produce quantum turbulence in the condensate. Depending on the combination of
these parameters different behaviors are observed in the sample. For the lowest
values of time and amplitude of excitation, we observe a bending of the main
axis of the cloud. Increasing the amplitude of excitation we observe an
increasing number of vortices. The vortex state can evolve into the turbulent
regime if the parameters of excitation are driven up to a certain set of
combinations. If the value of the parameters of these combinations is exceeded,
all vorticity disappears and the condensate enters into a different regime
which we have identified as the granular phase. Our results are summarized in a
diagram of amplitude versus time of excitation in which the different
structures can be identified. We also present numerical simulations of the
Gross-Pitaevskii equation which support our observations.Comment: 6 pages, 3 figure
Optical response of ferromagnetic YTiO_3 studied by spectral ellipsometry
We have studied the temperature dependence of spectroscopic ellipsometry
spectra of an electrically insulating, nearly stoichiometric YTiO_3 single
crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response
exhibits a weak but noticeable anisotropy. Using a classical dispersion
analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV.
Although the optical conductivity spectra are only weakly temperature dependent
below 300 K, we are able to distinguish high- and low-temperature regimes with
a distinct crossover point around 100 K. The low-temperature regime in the
optical response coincides with the temperature range in which significant
deviations from Curie-Weiss mean field behavior are observed in the
magnetization. Using an analysis based on a simple superexchange model, the
spectral weight rearrangement can be attributed to intersite d_i^1d_j^1
\longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig
consistent changes in optical spectra around 2.9 eV can be associated with the
high-spin-state (^3T_1) optical transition. This indicates that other
mechanisms, such as weakly dipole-allowed p-d transitions and/or
exciton-polaron excitations, can contribute significantly to the optical band
at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is
significantly suppressed and anisotropic, which we associate with complex
spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3
- …