237 research outputs found

    3D GLACIER MAPPING BY MEANS OF SATELLITE STEREO IMAGES: THE BELVEDERE GLACIER CASE STUDY IN THE ITALIAN ALPS

    Get PDF
    The authors group is within the Glacier Lab of Politecnico di Torino (part of the CC-LAB, a laboratory for climate change monitoring), which is working on glacier monitoring since 2016, mainly exploiting Geomatics techniques to measure the extent and to model the surface of glaciers over the years. Measurement campaigns were carried out within the ASP (Alta Scuola Politecnica – Poliecnico di Torino e Milano) DREAM projects (Drone tEchnnology for wAter resources and hydrologic hazard Monitoring) The manuscript is focused on a specific case study related to the Belvedere glacier, a valley glacier located in northern Italy.In the framework of the Belvedere glacier monitoring, several Geomatics approaches have already been applied in the last four years by the cc-glacier-lab and DREAM Projects with the goal to monitor both the extent of the glacier and its surface. Such monitoring enables the multi-temporal comparison of the glacier digital surface model (DSM), highlighting areas of ice loss and gain. Considering the limitations of aerial surveys in high altitude environments, the authors started assessing the suitability of a satellite based approach, mainly focusing on positional accuracy assessment. The paper is focused on a monitoring based on a high resolution (0.5 m) satellite optical stereo pair. Several tests were carried out with the goal to test the 3D positional accuracies, assessing the impact of different configurations of Ground Control Point (GCP) in terms of numerosity and distribution and focusing on the DSM validation. The results demonstrated the fit-for-purpose of a satellite-based approach for glacier monitoring

    THERMAL AND OPTICAL DATA FUSION SUPPORTING BUILT HERITAGE ANALYSES

    Get PDF
    Abstract. The recent developments of passive sensors techniques, that have been able to take advantage of the technological innovations related to sensors technical features, sensor calibration, the use of UAV systems (Unmanned Aerial Vehicle), the integration of image matching techniques and SfM (Structure from Motion) algorithms, enable to exploit both thermal and optical data in multi-disciplinary projects. This synergy boost the application of Infrared Thermography (IRT) to new application domains, since the capability to provide thematic information of the analysed objects benefits from the typical advantages of data georeferencing and metric accuracy, being able to compare results investigating different phenomena.This paper presents a research activity in terrestrial and aerial (UAV) applications, aimed at generating photogrammetric products with certified and controlled geometric and thematic accuracy even when the acquisitions of thermal data were not initially designed for the photogrammetric process. The basic principle investigated and pursued is the processing of a photogrammetric block of images, including thermal IR and optical imagery, using the same reference system, which allows the use of co-registration algorithms. Such approach enabled the generation of radiance maps, orthoimagery and 3D models embedding the thermal information of the investigated surfaces, also known as texture mapping; these geospatial dataset are particularly useful in the context of the built Heritage documentation, characterised by complex analyses challenges that a perfect fit for investigations based on interdisciplinary approaches

    UAV PHOTOGRAMMETRY AND VHR SATELLITE IMAGERY FOR EMERGENCY MAPPING. THE OCTOBER 2020 FLOOD IN LIMONE PIEMONTE (ITALY)

    Get PDF
    Heavy rain between the 2nd and 3rd of October 2020 severely affected the area of Limone Piemonte, Piemonte Region (Italy). The consequence of those two days of rain was a flood that, starting from the hamlet of Limonetto severely damaged the areas close to the riverbed of the Vermegnana river and the related hydrographyc network. A synergistic multi-sensor and multi-scale approach for documenting the affected areas using VHR satellite images and UAVs (Uncrewed Aerial Vehicles) is presented. The pro and cons in terms of level of detail and processing strategies are reviewed with a focus on the workflows adopted for processing large UAV datasets. A thorough analysis of the 3D positional accuracy achievable with different georeferentation strategies for UAVs data processing is carried out, confirming that if an RTK (Reale Time Kinematic)-enabled GNSS (Global Navigation Satellite System) receiver is available on the UAV platform and proper acquisition guidelines are followed, the use of GCPs (Ground Control Points) is not impacting significantly on the overall positional accuracy. Satellite data processing is also presented, confirming the suitability for large scale mapping

    THE IPAD PRO BUILT-IN LIDAR SENSOR: 3D RAPID MAPPING TESTS AND QUALITY ASSESSMENT

    Get PDF
    The main goal of this ongoing research is the evaluation of the iPad Pro built-in LiDAR sensor for large scale 3D rapid mapping. Different aspects have been considered from the architectural surveying perspective and several analyses were carried out focusing on the acquisition phase and the definition of best practices for data collection, the quantitative analysis on the acquired data and their 3D positional accuracy assessment, and the qualitative analysis of the achievable metric products. Despite this paper is a preliminary analysis and deeper studies in various application environment are necessary, the availability of a LiDAR sensor embedded in a tablet or mobile phone, appears promising for rapid surveying purposes. According to test outcomes, the sensor is able to rapidly acquire reliable 3D point clouds suitable for 1:200 architectural rapid mapping; the iPad Pro could represent an interesting novelty also thanks to its price (compared to standard surveying instruments), portability and limited time required both for data acquisition and processing

    Mobile mapping for disaster relief

    Get PDF
    This special issue foreword focuses on methods and technologies developed by researchers, practitioners, and decision makers around the world for enabling and using mobile disaster response

    Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway

    Get PDF
    Bioactive peptides are relevant nutritional factors that exhibit many functions including antioxidant, anti-hypertensive, anticancer and antimicrobial properties. In this paper, four synthetic peptides ARHPHPHLSFM (A-11-M), AVPYPQR (A-7-R), NPYVPR (N-6-R) and KVLPVPEK (K-8-K) with sequences present in milk proteinswere examined for their antioxidant properties. The compounds show moderate free radical scavenging activityin the ABTS and crocin assays (A-7-R and N-6-R) and lipid peroxidation inhibition in Caco-2 cells (N-6-R and K-8-K). All peptides, in particular K-8-K, activate the Keap1-Nrf2 system by allowing the translocation of the tran-scription factor Nrf2 from the cytosol to nucleus. This activation triggers the overexpression of the antioxidantenzymes Trx1, TrxR1, GR, NQO1 and SOD1. Furthermore, molecular modeling shows that K-8-K is able to hinderthe interaction of Nrf2 with Keap1. The reported results show that the antioxidant action in cells of thesebioactive peptides is mostly due to the activation of Keap1-Nrf2 signaling pathwa

    Economic aspects in the management of diabetes in Italy

    Get PDF
    Background: Diabetes mellitus (DM) is a chronic- degenerative disease associated with a high risk of chronic complications and comorbidities. The aim of this study is to estimate the average annual cost incurred by the Italian National Health Service (NHS) for the treatment of DM stratified by patients’ comorbidities. Moreover, the model estimates the economic impact of implementing good clinical practice for the management of patients with DM. Methods: Data were extrapolated from administrative database of the Marche Region and specific inclusion and exclusion criteria were developed from a clinical board in order to estimate patients with DM only, DM+1, DM+2, DM+3 and DM+4 comorbidities (cardiovascular disease, neuropathy, nephropathy and retinopathy). Regional data were considered a good proxy for implementing a previously developed cost-of- illness (COI) model from Italian NHS perspective already published. A scenario analysis was considered to estimate the economic impact of good clinical practice implementation in the treatment of DM and its comorbidities in Italy. Results: The model estimated an average number of patients with DM per year in the Marche region of 85.909 (5.5% of population) from 2008 to 2011. The mean costs per patients with DM only, DM+1, DM+2, DM+3 and DM+4 comorbidities were €341, €1,335, €2,287, €5,231 and €7,085 respectively. From the Italian NHS perspective, the total economic burden of DM in Italy amounted to €8.1. billion/year (22% for drugs, 74% for hospitalization and 4% for visits). Scenario analysis demonstrates that the implementation of good clinical practice could save over €700 million per year. Conclusions: This model is the first study that considers real world data and COI model to estimate the economic burden of DM and its comorbidities from the Italian NHS perspective. Integrated management of the patients with DM could be a good driver for the reduction of the costs of this disease in Italy
    • …
    corecore