56 research outputs found

    Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

    Full text link
    We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that it is stabilized over a wide range of tt and δ\delta. The signature of the state will be peaks in the neutron diffraction spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical conductivity is calculated based on the parameters in the model.Comment: submitted to Phys. Rev. B on January 8, 200

    Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors

    Full text link
    We discuss the problem of broken time reversal symmetry near grain boundaries in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the grain boundary. Both analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include

    Spin Susceptibility and Gap Structure of the Fractional-Statistics Gas

    Full text link
    This paper establishes and tests procedures which can determine the electron energy gap of the high-temperature superconductors using the t ⁣ ⁣Jt\!-\!J model with spinon and holon quasiparticles obeying fractional statistics. A simpler problem with similar physics, the spin susceptibility spectrum of the spin 1/2 fractional-statistics gas, is studied. Interactions with the density oscillations of the system substantially decrease the spin gap to a value of (0.2±0.2)(0.2 \pm 0.2) ωc\hbar \omega_c, much less than the mean-field value of ωc\hbar\omega_c. The lower few Landau levels remain visible, though broadened and shifted, in the spin susceptibility. As a check of the methods, the single-particle Green's function of the non-interacting Bose gas viewed in the fermionic representation, as computed by the same approximation scheme, agrees well with the exact results. The same mechanism would reduce the gap of the t ⁣ ⁣Jt\!-\!J model without eliminating it.Comment: 35 pages, written in REVTeX, 16 figures available upon request from [email protected]

    Confinement of Slave-Particles in U(1) Gauge Theories of Strongly-Interacting Electrons

    Full text link
    We show that slave particles are always confined in U(1) gauge theories of interacting electron systems. Consequently, the low-lying degrees of freedom are different from the slave particles. This is done by constructing a dual formulation of the slave-particle representation in which the no-double occupany constraint becomes linear and, hence, soluble. Spin-charge separation, if it occurs, is due to the existence of solitons with fractional quantum numbers

    Paired States in the Even Integer Quantum Hall Effect

    Full text link
    We argue that a new type of quantum Hall state requiring non-perturbative Landau level mixing arises at low electron density. In these states, up and down spin electrons pair to form spinless bosons that condense into a bosonic quantum Hall state. We describe a wavefunction for a paired quantum Hall state at ν=2\nu=2 and argue that it is stabilized by a BCS instability arising in flux attachment calculations. Based on this state, we derive a new global phase diagram for the integral quantum Hall effect with spin. Additional experimental implications are discussed.Comment: uufile, includes 4 page revtex file and 1 figure fil

    On the Current Carried by `Neutral' Quasiparticles

    Full text link
    The current should be proportional to the momentum in a Galilean-invariant system of particles of fixed charge-to-mass ratio, such as an electron liquid in jellium. However, strongly-interacting electron systems can have phases characterized by broken symmetry or fractionalization. Such phases can have neutral excitations which can presumably carry momentum but not current. In this paper, we show that there is no contradiction: `neutral' excitations {\em do} carry current in a Galilean-invariant system of particles of fixed charge-to-mass ratio. This is explicitly demonstrated in the context of spin waves, the Bogoliubov-de Gennes quasiparticles of a superconductor, the one-dimensional electron gas, and spin-charge separated systems in 2+1 dimensions. We discuss the implications for more realistic systems, which are not Galilean-invariant

    Effective field theory

    Full text link
    I give a brief review of effective field theory, disscussing the contribution of Feza G\"ursey in particular and focusing on the literature I am most familiar with.Comment: 17 pages, no figs, macros appended, plain te
    corecore