841 research outputs found

    Electron-Hole Asymmetry in GdBaCo_{2}O_{5+x}: Evidence for Spin Blockade of Electron Transport in a Correlated Electron System

    Full text link
    In RBaCo_{2}O_{5+x} compounds (R is rare earth) variability of the oxygen content allows precise doping of CoO_2 planes with both types of charge carriers. We study transport properties of doped GdBaCo_{2}O_{5+x} single crystals and find a remarkable asymmetry in the behavior of holes and electrons doped into a parent insulator GdBaCo_{2}O_{5.5}. Doping dependences of resistivity, Hall response, and thermoelectric power reveal that the doped holes greatly improve the conductivity, while the electron-doped samples always remain poorly conducting. This doping asymmetry provides strong evidence for a spin blockade of the electron transport in RBaCo_{2}O_{5+x}.Comment: 4 pages, 5 figures, accepted for publication in PR

    Quantum oscillations in a topological insulator Bi_{1-x}Sb_{x}

    Full text link
    We have studied transport and magnetic properties of Bi_{1-x}Sb_x, which is believed to be a topological insulator - a new state of matter where an insulating bulk supports an intrinsically metallic surface. In nominally insulating Bi_{0.91}Sb_{0.09} crystals, we observed strong quantum oscillations of the magnetization and the resistivity originating from a Fermi surface which has a clear two-dimensional character. In addition, a three-dimensional Fermi surface is found to coexist, which is possibly due to an unusual coupling of the bulk to the surface. This finding demonstrates that quantum oscillations can be a powerful tool to directly probe the novel electronic states in topological insulators.Comment: 4 pages, 4 figure

    Additional Evidence for the Surface Origin of the Peculiar Angular-Dependent Magnetoresistance Oscillations Discovered in a Topological Insulator Bi_{1-x}Sb_{x}

    Full text link
    We present detailed data on the unusual angular-dependent magnetoresistance oscillation phenomenon recently discovered in a topological insulator Bi_{0.91}Sb_{0.09}. Direct comparison of the data taken before and after etching the sample surface gives compelling evidence that this phenomenon is essentially originating from a surface state. The symmetry of the oscillations suggests that it probably comes from the (111) plane, and obviously a new mechanism, such as a coupling between the surface and the bulk states, is responsible for this intriguing phenomenon in topological insulators.Comment: 5 pages, 4 figures, Proceedings manuscript for the 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19

    Ising-like Spin Anisotropy and Competing Antiferromagnetic - Ferromagnetic Orders in GdBaCo_{2}O_{5.5} Single Crystals

    Full text link
    In RBaCo_{2}O_{5+x} compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo_{2}O_{5.5} single crystals, and find a remarkable uniaxial anisotropy of Co^{3+} spins which is tightly linked with the chain oxygen ordering in GdO_{0.5} planes. Reflecting the underlying oxygen order, CoO_2 planes also develop a spin-state order consisting of Co^{3+} ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.Comment: 5 pages, 4 figures, accepted to Phys.Rev.Let

    Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi_{1-x}Sb_{x}

    Full text link
    The angular-dependent magnetoresistance and the Shubnikov-de Haas oscillations are studied in a topological insulator Bi_{0.91}Sb_{0.09}, where the two-dimensional (2D) surface states coexist with a three-dimensional (3D) bulk Fermi surface (FS). Two distinct types of oscillatory phenomena are discovered in the angular-dependence: The one observed at lower fields is shown to originate from the surface state, which resides on the (2\bar{1}\bar{1}) plane, giving a new way to distinguish the 2D surface state from the 3D FS. The other one, which becomes prominent at higher fields, probably comes from the (111) plane and is obviously of unknown origin, pointing to new physics in transport properties of topological insulators.Comment: 4 pages, 5 figures, revised version with improved data and analysi
    • …
    corecore