55 research outputs found

    n-valued quandles and associated bialgebras

    Full text link
    The principal aim of this article is to introduce and study n-valued quandles and n-corack bialgebras. We elaborate the basic methods of this theory, reproduce the coset construction known in the theory of n-valued groups. We also consider a construction of n-valued quandles using n-multi-quandles. In contrast to the case of n-valued groups this construction turns out to be quite rich in algebraic and topological applications. An important part of the work is the study of the properties of n-corack bialgebras those role is analogous to the group bialgebra.Comment: 22 page

    SU(3) Richardson-Gaudin models: three level systems

    Full text link
    We present the exact solution of the Richardson-Gaudin models associated with the SU(3) Lie algebra. The derivation is based on a Gaudin algebra valid for any simple Lie algebra in the rational, trigonometric and hyperbolic cases. For the rational case additional cubic integrals of motion are obtained, whose number is added to that of the quadratic ones to match, as required from the integrability condition, the number of quantum degrees of freedom of the model. We discuss different SU(3) physical representations and elucidate the meaning of the parameters entering in the formalism. By considering a bosonic mapping limit of one of the SU(3) copies, we derive new integrable models for three level systems interacting with two bosons. These models include a generalized Tavis-Cummings model for three level atoms interacting with two modes of the quantized electric field.Comment: Revised version. To appear in Jour. Phys. A: Math. and Theo

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(zLGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Bethe eigenvectors of higher transfer matrices

    Full text link
    We consider the XXX-type and Gaudin quantum integrable models associated with the Lie algebra glNgl_N. The models are defined on a tensor product irreducible glNgl_N-modules. For each model, there exist NN one-parameter families of commuting operators on the tensor product, called the transfer matrices. We show that the Bethe vectors for these models, given by the algebraic nested Bethe ansatz are eigenvectors of higher transfer matrices and compute the corresponding eigenvalues.Comment: 48 pages, amstex.tex (ver 2.2), misprints correcte

    Integrable Models From Twisted Half Loop Algebras

    Get PDF
    This paper is devoted to the construction of new integrable quantum mechanical models based on certain subalgebras of the half loop algebra of gl(N). Various results about these subalgebras are proven by presenting them in the notation of the St Petersburg school. These results are then used to demonstrate the integrability, and find the symmetries, of two types of physical system: twisted Gaudin magnets, and Calogero-type models of particles on several half-lines meeting at a point.Comment: 22 pages, 1 figure, Introduction improved, References adde

    Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases

    Full text link
    Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of nn copies of the universal enveloping algebra U(\g) of a semisimple Lie algebra \g. This family is parameterized by collections of pairwise distinct complex numbers z1,...,znz_1,...,z_n. We obtain some new commutative subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the hamiltonians of bending flows and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde

    Morphological characteristic during third week experimental nephrolithiasis model

    Get PDF
    The results of kidney medulla morphological study from Wistar rats with ethylenglycol oxalate nephrolithiasis model are analyzed. Alteration of internal and external medulla, microliths allocation characteristics are evaluated

    Spectral Duality in Integrable Systems from AGT Conjecture

    Full text link
    We describe relationships between integrable systems with N degrees of freedom arising from the AGT conjecture. Namely, we prove the equivalence (spectral duality) between the N-cite Heisenberg spin chain and a reduced gl(N) Gaudin model both at classical and quantum level. The former one appears on the gauge theory side of the AGT relation in the Nekrasov-Shatashvili (and further the Seiberg-Witten) limit while the latter one is natural on the CFT side. At the classical level, the duality transformation relates the Seiberg-Witten differentials and spectral curves via a bispectral involution. The quantum duality extends this to the equivalence of the corresponding Baxter-Schrodinger equations (quantum spectral curves). This equivalence generalizes both the spectral self-duality between the 2x2 and NxN representations of the Toda chain and the famous AHH duality

    Benchmarking of Uranium-238 Evaluations against Spherical Transmission and (n,xn)-Reaction Experimental Data

    Get PDF
    Abstract. The double differential cross sections for the U(n,xn) reaction at 14 MeV and neutron leakage spectra from the uranium sphere of 24 cm outer and 8 cm inner diameters with the central T-D and 252 Cf neutron sources measured at the Institute of Physics and Power Engineering were used for benchmarking the evaluated cross sections from ENDF-B6, JEFF-3.0, and "Maslov" libraries and preliminary versions of JEFF-3.1 and ENDF-B7 evaluations for 238 U

    Spectral Duality Between Heisenberg Chain and Gaudin Model

    Full text link
    In our recent paper we described relationships between integrable systems inspired by the AGT conjecture. On the gauge theory side an integrable spin chain naturally emerges while on the conformal field theory side one obtains some special reduced Gaudin model. Two types of integrable systems were shown to be related by the spectral duality. In this paper we extend the spectral duality to the case of higher spin chains. It is proved that the N-site GL(k) Heisenberg chain is dual to the special reduced k+2-points gl(N) Gaudin model. Moreover, we construct an explicit Poisson map between the models at the classical level by performing the Dirac reduction procedure and applying the AHH duality transformation.Comment: 36 page
    corecore