18 research outputs found

    Diffractive orbits in isospectral billiards

    Full text link
    Isospectral domains are non-isometric regions of space for which the spectra of the Laplace-Beltrami operator coincide. In the two-dimensional Euclidean space, instances of such domains have been given. It has been proved for these examples that the length spectrum, that is the set of the lengths of all periodic trajectories, coincides as well. However there is no one-to-one correspondence between the diffractive trajectories. It will be shown here how the diffractive contributions to the Green functions match nevertheless in a ''one-to-three'' correspondence.Comment: 20 pages, 6 figure

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure

    Hexagonal dielectric resonators and microcrystal lasers

    Get PDF
    We study long-lived resonances (lowest-loss modes) in hexagonally shaped dielectric resonators in order to gain insight into the physics of a class of microcrystal lasers. Numerical results on resonance positions and lifetimes, near-field intensity patterns, far-field emission patterns, and effects of rounding of corners are presented. Most features are explained by a semiclassical approximation based on pseudointegrable ray dynamics and boundary waves. The semiclassical model is also relevant for other microlasers of polygonal geometry.Comment: 12 pages, 17 figures (3 with reduced quality

    Evanescent wave approach to diffractive phenomena in convex billiards with corners

    Full text link
    What we are going to call in this paper "diffractive phenomena" in billiards is far from being deeply understood. These are sorts of singularities that, for example, some kind of corners introduce in the energy eigenfunctions. In this paper we use the well-known scaling quantization procedure to study them. We show how the scaling method can be applied to convex billiards with corners, taking into account the strong diffraction at them and the techniques needed to solve their Helmholtz equation. As an example we study a classically pseudointegrable billiard, the truncated triangle. Then we focus our attention on the spectral behavior. A numerical study of the statistical properties of high-lying energy levels is carried out. It is found that all computed statistical quantities are roughly described by the so-called semi-Poisson statistics, but it is not clear whether the semi-Poisson statistics is the correct one in the semiclassical limit.Comment: 7 pages, 8 figure

    Spectral properties of quantized barrier billiards

    Full text link
    The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal approximation. All results together are consistent with the so-called semi-Poisson statistics.Comment: 8 pages, 9 figure

    Slow relaxation in weakly open vertex-splitting rational polygons

    Get PDF
    The problem of splitting effects by vertex angles is discussed for nonintegrable rational polygonal billiards. A statistical analysis of the decay dynamics in weakly open polygons is given through the orbit survival probability. Two distinct channels for the late-time relaxation of type 1/t^delta are established. The primary channel, associated with the universal relaxation of ''regular'' orbits, with delta = 1, is common for both the closed and open, chaotic and nonchaotic billiards. The secondary relaxation channel, with delta > 1, is originated from ''irregular'' orbits and is due to the rationality of vertices.Comment: Key words: Dynamics of systems of particles, control of chaos, channels of relaxation. 21 pages, 4 figure

    Spin chains from super-models

    Get PDF
    We construct and study a class of N particle supersymmetric Hamiltonians with nearest and next-nearest neighbor inverse-square interaction in one dimension. We show that inhomogeneous XY models in an external non-uniform magnetic field can be obtained from these super-Hamiltonians in a particular limit decoupling the fermionic degrees of freedom from the kinematic ones. We further consider a suitable deformation of these super-models such that inhomogeneous XXZ Hamiltonians in an external non-uniform magnetic field are obtained in the same limit. We show that this deformed Hamiltonian with rational potential is, (i) mapped to a set of free super-oscillators through a similarity transformation and (ii) supersymmetric in terms of a new, non-standard realization of the supercharge. We construct many exact eigenstates of this Hamiltonian and discuss about the applicability of this technique to other models.Comment: 36 pages, RevTeX, No figures, v1; Corrected typos, Added minor clarifications, v2; Added discussions, version to appear in JPSJ, v

    The billiard in a regular polygon

    No full text
    corecore