6,848 research outputs found

    Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    Full text link
    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2_2Sr2_2CaCu2_2O8_8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5 pages, 11 figures) for associated video file, see http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp

    Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    Get PDF
    We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption

    Get PDF
    Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube

    Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates

    Full text link
    We use angle-resolved photoemission to unravel the quasiparticle decoherence process in the high-TcT_c cuprates. The coherent band is highly renormalized, and the incoherent part manifests itself as a nearly vertical ``dive'' in the EE-kk intensity plot that approaches the bare band bottom. We find that the coherence-incoherence crossover energies in the hole- and electron-doped cuprates are quite different, but scale to their corresponding bare bandwidth. This rules out antiferromagnetic fluctuations as the main source for decoherence. We also observe the coherent band bottom at the zone center, whose intensity is strongly suppressed by the decoherence process. Consequently, the coherent band dispersion for both hole- and electron-doped cuprates is obtained, and is qualitatively consistent with the framework of Gutzwiller projection.Comment: 4 pages, 4 figure

    Long range magnetic ordering in Na2_2IrO3_3

    Full text link
    We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na2_2IrO3_3, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L3_3-edge, we find 3D long range antiferromagnetic order below TN_N=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {\it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel "zig-zag" structure

    Experimental observation of the crystallization of a paired holon state

    Full text link
    A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr14_{14}Cu24_{24}O41_{41}, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDWL_L), but persists above the CDWL_L transition temperature (TCDWLT_{CDW_L}), indicating a strong local pairing above TCDWLT_{CDW_L}. The 201 meV excitation vanishes in La6_{6}Ca8_{8}Cu24_{24}O41+δ_{41+\delta}, and La5_{5}Ca9_{9}Cu24_{24}O41_{41} which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below TCDWT_{CDW}.Comment: Accepted for publication in Physical Review Letters (4 figures
    corecore