1,374 research outputs found

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    A Closed Contour of Integration in Regge Calculus

    Get PDF
    The analytic structure of the Regge action on a cone in dd dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra

    Quasinormal Modes and Black Hole Quantum Mechanics in 2+1 Dimensions

    Full text link
    We explore the relationship between classical quasinormal mode frequencies and black hole quantum mechanics in 2+1 dimensions. Following a suggestion of Hod, we identify the real part of the quasinormal frequencies with the fundamental quanta of black hole mass and angular momentum. We find that this identification leads to the correct quantum behavior of the asymptotic symmetry algebra, and thus of the dual conformal field theory. Finally, we suggest a further connection between quasinormal mode frequencies and the spectrum of a set of nearly degenerate ground states whose multiplicity may be responsible for the Bekenstein-Hawking entropy.Comment: 8 pages, LaTeX; references added and corrected, introduction and conclusion slightly expande

    Quasinormal Modes of Extremal BTZ Black Hole

    Full text link
    Motivated by several pieces of evidence, in order to show that extreme black holes cannot be obtained as limits of non-extremal black holes, in this article we calculate explicitly quasinormal modes for Ba\~{n}ados, Teitelboim and Zanelli (BTZ) extremal black hole and we showed that the imaginary part of the frequency is zero. We obtain exact result for the scalar an fermionic perturbations. We also showed that the frequency is bounded from below for the existence of the normal modes (non-dissipative modes).Comment: 6 pp. Accepted Classical and Quantum Gravity. Typos corrected and some references was added. Final Versio

    Symmetries and Observables for BF-theories in Superspace

    Get PDF
    The supersymmetric version of a topological quantum field theory describing flat connections, the super BF-theory, is studied in the superspace formalism. A set of observables related to topological invariants is derived from the curvature of the superspace. Analogously to the non-supersymmetric versions, the theory exhibits a vector-like supersymmetry. The role of the vector supersymmetry and an additional new symmetry of the action in the construction of observables is explained.Comment: 11 pages, LaTe

    Conformal Field Theory Interpretation of Black Hole Quasi-normal Modes

    Get PDF
    We obtain exact expressions for the quasi-normal modes of various spin for the BTZ black hole. These modes determine the relaxation time of black hole perturbations. Exact agreement is found between the quasi-normal frequencies and the location of the poles of the retarded correlation function of the corresponding perturbations in the dual conformal field theory. This then provides a new quantitative test of the AdS/CFT correspondence.Comment: 4 pages, RevTeX, references adde

    Algebraic renormalization of the BF Yang-Mills Theory

    Get PDF
    We discuss the quantum equivalence, to all orders of perturbation theory, between the Yang-Mills theory and its first order formulation through a second rank antisymmetric tensor field. Moreover, the introduction of an additional nonphysical vector field allows us to interpret the Yang-Mills theory as a kind of perturbation of the topological BF model.Comment: 14 pages, some references and acknowledgments added, version to appear in Phys.Lett.

    Area Spectrum of Near Extremal Black Branes from Quasi-normal Modes

    Full text link
    Motivated by the recent interest in quantization of black hole area spectrum, we consider the area spectrum of near extremal black 33-branes. Based on the proposal by Bekenstein and others that the black hole area spectrum is discrete and equally spaced, we implement Kunstatter's method to derive the area spectrum for the near extremal black 33-branes. The result for the area of event horizon although discrete, is not equally spaced.Comment: 8 pages, no figures, accepted for publication in IJT

    Brane-world generalizations of the Einstein static universe

    Get PDF
    A static Friedmann brane in a 5-dimensional bulk (Randall-Sundrum type scenario) can have a very different relation between the density, pressure, curvature and cosmological constant than in the case of the general relativistic Einstein static universe. In particular, static Friedmann branes with zero cosmological constant and 3-curvature, but satisfying rho>0 and rho+3p>0, are possible. Furthermore, we find static Friedmann branes in a bulk that satisfies the Einstein equations but is not Schwarzschild-anti de Sitter or its specializations. In the models with negative bulk cosmological constant, a positive brane tension leads to negative density and 3-curvature.Comment: additional interpretation of new solutions; accepted by Class.Quant.Gra

    Relaxation in Conformal Field Theory, Hawking-Page Transition, and Quasinormal/Normal Modes

    Get PDF
    We study the process of relaxation back to thermal equilibrium in (1+1)(1+1)-dimensional conformal field theory at finite temperature. When the size of the system is much larger than the inverse temperature, perturbations decay exponentially with time. On the other hand, when the inverse temperature is large, the relaxation is oscillatory with characteristic period set by the size of the system. We then analyse the intermediate regime in two specific models, namely free fermions, and a strongly coupled large k\tt k conformal field theory which is dual to string theory on (2+1)(2+1)-dimensional anti-de Sitter spacetime. In the latter case, there is a sharp transition between the two regimes in the k={\tt k}=\infty limit, which is a manifestation of the gravitational Hawking-Page phase transition. In particular, we establish a direct connection between quasinormal and normal modes of the gravity system, and the decaying and oscillating behaviour of the conformal field theory.Comment: 10 pages, latex, no figure
    corecore