167 research outputs found
Planar channeling and quasichanneling oscillations in a bent crystal
Particles passing through a crystal under planar channeling experience
transverse oscillations in their motion. As channeled particles approach the
atomic planes of a crystal, they are likely to be dechanneled. This effect was
used in ion-beam analysis with MeV energy. We studied this effect in a bent
crystal for positive and negative particles within a wide range of energies in
sight of application of such crystals at accelerators. We found the conditions
for the appearance or not of channeling oscillations. Indeed a new kind of
oscillations, strictly related to the motion of over-barrier particles, i.e.
quasichanneling particles, has been predicted. Such oscillations, named planar
quasichanneling oscillations, possess a different nature than channeling
oscillations. Through computer simulation, we studied this effect and provided
a theoretical interpretation for them. We show that channeling oscillations can
be observed only for positive particles while quasichanneling oscillations can
exist for particles with either sign. The conditions for experimental
observation of channeling and quasichanneling oscillations at existing
accelerators with available crystal has been found and optimized.Comment: 25 pages, 11 figure
simulation code for modeling of coherent effects of radiation generation in oriented crystals
We present the crystalrad simulation code, combining all the features of the crystal simulation code for simulations of charged particles trajectories in a bent crystal and the radcharm++ code for calculation of the radiation spectrum. The crystalrad code is based on Monte Carlo simulations of trajectories in the planar and axial electric field either in a straight, bent, or periodically bent crystal taking into account multiple and single Coulomb scattering on nuclei and electrons, nuclear scattering and ionization energy losses. The trajectories simulated are used for calculation of radiation spectra by the Baier-Katkov method. We compare our simulations with experimental data taken at MAMI (MAinzer MIkrotron) as well as give an example for a possible future study with sub-GeV electrons interacting with Si bent crystals
Strong Reduction of the Effective Radiation Length in an Axially Oriented Scintillator Crystal
We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline electromagnetic field. The data collected at the external lines of the CERN Super Proton Synchrotron were critically compared to Monte Carlo simulations based on the Baier-Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of 5 in the case of beam alignment with the [001] crystal axes. The observed effect opens the way to the realization of compact electromagnetic calorimeters or detectors based on oriented scintillator crystals in which the amount of material can be strongly reduced with respect to the state of the art. These devices could have relevant applications in fixed-target experiments, as well as in satellite-borne γ telescopes
A high-performance custom photodetection system to probe the light yield enhancement in oriented crystals
Scintillating homogeneous detectors represent the state of the art in
electromagnetic calorimetry. Moreover, the currently neglected crystalline
nature of the most common inorganic scintillators can be exploited to achieve
an outstanding performance boost in terms of compactness and energy resolution.
In fact, it was recently demonstrated by the AXIAL/ELIOT experiments that a
strong reduction in the radiation length inside PWO, and a subsequent
enhancement in the scintillation light emitted per unit thickness, are attained
when the incident particle trajectory is aligned with a crystal axis within
. A SiPM-based system has been developed to directly probe this
remarkable effect by measuring the scintillation light emitted by a PWO sample.
The same concept could be applied to full-scale detectors that would feature a
design significantly more compact than currently achievable and unparalleled
resolution in the range of interest for present and future experiments
- …