78 research outputs found

    Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    Full text link
    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.Comment: 14 pages, 3 figures, submitted to EPJ

    Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    Get PDF
    10 págs.; 4 figs. 1 tab. ; Open Access funded by Creative Commons Atribution Licence 4.0Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.We acknowledge the financial support received from the European Union Seventh Framework Programme (PEOPLE2013-ITN-ARGENT project) under grant agreement no. 608163.Peer Reviewe
    • …
    corecore