36 research outputs found

    BCL11B Drives Human Mammary Stem Cell Self-Renewal In Vitro by Inhibiting Basal Differentiation

    Get PDF
    The epithelial compartment of the mammary gland contains basal and luminal cell lineages, as well as stem and progenitor cells that reside upstream in the differentiation hierarchy. Stem and progenitor cell differentiation is regulated to maintain adult tissue and mediate expansion during pregnancy and lactation. The genetic factors that regulate the transition of cells between differentiation states remain incompletely understood. Here, we present a genome-scale method to discover genes driving cell-state specification. Applying this method, we identify a transcription factor, BCL11B, which drives stem cell self-renewal in vitro, by inhibiting differentiation into the basal lineage. To validate BCL11B's functional role, we use two-dimensional colony-forming and three-dimensional tissue differentiation assays to assess the lineage differentiation potential and functional abilities of primary human mammary cells. These findings show that BCL11B regulates mammary cell differentiation and demonstrate the utility of our proposed genome-scale strategy for identifying lineage regulators in mammalian tissues. Miller et al. describe a strategy to identify candidate master regulators of cell lineage specification. This approach identified BCL11B as a key regulator of human mammary stem cell self-renewal in in vitro progenitor and differentiation assays. Using a combination of 2D and 3D primary cell culture techniques, they show that BCL11B drives stem cell self-renewal by inhibiting basal lineage commitment.National Science Foundation (U.S.) (Grant 1122374

    The aesthetics of verticality: a gravitational contribution to aesthetic preference

    Get PDF
    Verticality plays a fundamental role in the arts, portraying concepts such as power, grandeur, or even morality; however, it is unclear whether people have an aesthetic preference for vertical stimuli. The perception of verticality occurs by integrating vestibular-gravitational input with proprioceptive signals about body posture. Thus, these signals may influence the preference for verticality. Here, we show that people have a genuine aesthetic preference for stimuli aligned with the vertical, and this preference depends on the position of the body relative to the gravitational direction. Observers rated the attractiveness of lines that varied in inclination. Perfectly vertical lines were judged to be more attractive than those inclined clockwise or anticlockwise only when participants held an upright posture. Critically, this preference was not present when their body was tilted away from the gravitational vertical. Our results showed that gravitational signals make a contribution to the perception of attractiveness of environmental objects

    Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity

    Get PDF
    The role of ATP-binding Cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of Lipoprotein Lipase (LPL).As both ABCG1 and LPL are expressed in adipose tissue, we hypothesize that ABCG1 is implicated in adipocyte TG storage and could be then a major actor in adipose tissue fat accumulation.Silencing of Abcg1 expression by RNAi in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during initial phase of differentiation. Generation of stable Abcg1 Knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of Pparγ expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 SNPs (rs1893590 (A/C) and rs1378577 (T/G)) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with an increased PPARγ expression and adiposity concomitant to an increased fat mass and BMI (haplotype AT>GC). The critical role of ABCG1 regarding obesity was further confirmed in independent populations of severe obese and diabetic obese individuals.For the first time, this study identifies a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity
    corecore