4,989 research outputs found

    Anomalous Anisotropic Magnetoresistance in Heavy-Fermion PrFe4P12

    Full text link
    We have investigated the anisotropy of the magnetoresistance in the Pr-based HF compound PrFe4P12. The large anisotropy of effective mass and its strong field dependence have been confirmed by resistivity measurements. Particularly for H||[111], where the effective mass is most strongly enhanced, the non-Fermi liquid behavior has been observed. Also, we have found the angular dependence of the magnetoresistance sharply enhanced at H||[111], which is evidently correlated with both the non-Fermi liquid behavior and the high-field ordered state (B-phase).Comment: 3 pages, 3 figures. J. Phys. Soc. Jpn. Vol.77, No.8, in pres

    Superconducting phase diagram of the filled skuterrudite PrOs4Sb12

    Get PDF
    We present new measurements of the specific heat of the heavy fermion superconductor PrOs4Sb12, on a sample which exhibits two sharp distinct anomalies at Tc1= 1.89K and Tc2= 1.72K. They are used to draw a precise magnetic field-temperature superconducting phase diagram of PrOs4Sb12 down to 350 mK. We discuss the superconducting phase diagram of PrOs4Sb12 and its possible relation with an unconventional superconducting order parameter. We give a detailed analysis of Hc2(T), which shows paramagnetic limitation (a support for even parity pairing) and multiband effects

    Drastic change in transport of entropy with quadrupolar ordering in PrFe4_{4}P12_{12}

    Full text link
    The antiferroquadrupolar ordering of PrFe4_{4}P12_{12} is explored by probing thermal and thermoelectric transport. The lattice thermal conductivity drastically increases with the ordering, as a consequence of a large drop in carrier concentration and a strong electron-phonon coupling. The low level of carrier density in the ordered state is confirmed by the anomalously large values of the Seebeck and Nernst coefficients. The results are reminiscent of URu2_{2}Si2_{2} and suggest that both belong to the same class of aborted metal-insulator transitions. The magnitude of the Nernst coefficient, larger than in any other metal, indicates a new route for Ettingshaussen cooling at Kelvin temperatures.Comment: final published versio

    Self-assembly of Nanometer-scale Magnetic Dots with Narrow Size Distributions on an Insulating Substrate

    Full text link
    The self-assembly of iron dots on the insulating surface of NaCl(001) is investigated experimentally and theoretically. Under proper growth conditions, nanometer-scale magnetic iron dots with remarkably narrow size distributions can be achieved in the absence of a wetting layer Furthermore, both the vertical and lateral sizes of the dots can be tuned with the iron dosage without introducing apparent size broadening, even though the clustering is clearly in the strong coarsening regime. These observations are interpreted using a phenomenological mean-field theory, in which a coverage-dependent optimal dot size is selected by strain-mediated dot-dot interactions.Comment: 5 pages, 4 figure

    Primary cultures of chick osteocytes retain functional gap junctions between osteocytes and between osteocytes and osteoblasts

    Get PDF
    The inaccessibility of osteocytes due to their embedment in the calcified bone matrix in vivo has precluded direct demonstration that osteocytes use gap junctions as a means of intercellular communication. In this article, we report successfully isolating primary cultures of osteocytes from chick calvaria, and, using anti-connexin 43 immunocytochemistry, demonstrate gap junction distribution to be comparable to that found in vivo. Next, we demonstrate the functionality of the gap junctions by (1) dye coupling studies that showed the spread of microinjected Lucifer Yellow from osteoblast to osteocyte and between adjacent osteocytes and (2) analysis of fluorescence replacement after photobleaching (FRAP), in which photobleaching of cells loaded with a membrane-permeable dye resulted in rapid recovery of fluorescence into the photobleached osteocyte, within 5 min postbleaching. This FRAP effect did not occur when cells were treated with a gap junction blocker (18 alpha-glycyrrhetinic acid), but replacement of fluorescence into the photobleached cell resumed when it was removed. These studies demonstrate that gap junctions are responsible for intercellular communication between adjacent osteocytes and between osteoblasts and osteocytes. This role is consistent with the ability of osteocytes to respond to and transmit signals over long distances while embedded in a calcified matrix. </p

    Possible Kondo resonance in PrFe4P12 studied by bulk-sensitive photoemission

    Full text link
    Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its intensity at lower temperatures is observed. We speculate that this is the Kondo resonance of Pr, the origin of which is attributed to the strong hybridization between the Pr 4f and the conduction electrons.Comment: 4 pages(camera ready format), 4 figures, ReVTeX

    D-branes in T-fold conformal field theory

    Full text link
    We investigate boundary dynamics of orbifold conformal field theory involving T-duality twists. Such models typically appear in contexts of non-geometric string compactifications that are called monodrofolds or T-folds in recent literature. We use the framework of boundary conformal field theory to analyse the models from a microscopic world-sheet perspective. In these backgrounds there are two kinds of D-branes that are analogous to bulk and fractional branes in standard orbifold models. The bulk D-branes in T-folds allow intuitive geometrical interpretations and are consistent with the classical analysis based on the doubled torus formalism. The fractional branes, on the other hand, are `non-geometric' at any point in the moduli space and their geometric counterparts seem to be missing in the doubled torus analysis. We compute cylinder amplitudes between the bulk and fractional branes, and find that the lightest modes of the open string spectra show intriguing non-linear dependence on the moduli (location of the brane or value of the Wilson line), suggesting that the physics of T-folds, when D-branes are involved, could deviate from geometric backgrounds even at low energies. We also extend our analysis to the models with SU(2) WZW fibre at arbitrary levels.Comment: 38 pages, no figure, ams packages. Essentially the published versio

    Thermodynamics of Superstring on Near-extremal NS5 and Effective Hagedorn Behavior

    Full text link
    We study the thermodynamical torus partition function of superstring on the near-extremal black NS5-brane background. The exact partition function has been computed with the helps of our previous works:[arXiv:1012.5721 [hep-th]], [arXiv:1109.3365 [hep-th]], and naturally decomposed into two parts. The first part is contributed from strings freely propagating in the asymptotic region, which are identified as the superstring gas at the Hawking temperature on the linear-dilaton background. The second part includes the contribution localized around the `tip of cigar', which characterizes the non-extremality. Remarkably, the latter part includes massless excitations with non-vanishing thermal winding, which signifies that the Hagedorn-like behavior effectively appears, even though the Hawking temperature is much lower than the Hagedorn temperature. We also explore the high-temperature backgrounds defined by the orbifolding along the Euclidean time direction. In those cases, the thermal winding modes localized around the tip are found to be tachyonic, reflecting the singularities of Euclidean backgrounds caused by orbifolding.Comment: 1+29 pages, no figure; v2 the footnote 1 is enhanced, to appear in JHE
    • …
    corecore