854 research outputs found

    Network protocol scalability via a topological Kadanoff transformation

    Full text link
    A natural hierarchical framework for network topology abstraction is presented based on an analogy with the Kadanoff transformation and renormalisation group in theoretical physics. Some properties of the renormalisation group bear similarities to the scalability properties of network routing protocols (interactions). Central to our abstraction are two intimately connected and complementary path diversity units: simple cycles, and cycle adjacencies. A recursive network abstraction procedure is presented, together with an associated generic recursive routing protocol family that offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio

    Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems

    Full text link
    We study a question of presence of Kohn points, yielding at low temperatures non-analytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectum of some three-dimensional systems. In particular, we consider one-band model on face centered cubic lattice with hopping between nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2_2, and the two-band model on body centered cubic lattice, modeling the dispersion of chromium. For the former model it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model we show existence of the lines of Kohn points, yielding maximum of the susceptibility, which position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.Comment: 13 pages, 9 figures. JETP, in press (2017
    corecore