3 research outputs found
Evidence for Large-Scale Gene-by-Smoking Interaction Effects on Pulmonary Function
Background: Smoking is the strongest environmental risk factor for reduced pulmonary
function. The genetic component of various pulmonary traits has also been demonstrated, and
at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in
1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and
genetic loci are well established, the question of potential gene-by-smoking interaction effect
remains unanswered. The aim of the present study was to assess, using a genetic risk score
approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking.
Methods: We evaluated the interaction between smoking exposure, considered as either ever
vs. never or pack-years, and a 26 SNPs genetic risk score in relation to FEV1 or FEV1/FVC in 50
047 participants of European ancestry from the CHARGE and SpiroMeta consortia.
Results: We identified an interaction ( = −0.036, 95% confidence interval, -0.040 – -0.032,
P=0.00057) between an unweighted 26 SNPs genetic risk score and smoking status (ever/never)
on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling
below the FEV1/FVC threshold used to diagnose chronic obstructive pulmonary disease is higher
among ever smokers than among never smokers.
Conclusions: This study highlights the benefit of using genetic risk scores for identifying
interactions missed when studying individual SNPs, and shows for the first time that persons
with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious
effects of smoking
Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function
BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function
Genome-wide association analysis identifies six new loci associated with forced vital capacity
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease