393 research outputs found

    Induced quantum numbers of a magnetic vortex at nonzero temperature

    Full text link
    The phenomenon of the finite-temperature induced quantum numbers in fermionic systems with topological defects is analyzed. We consider an ideal gas of twodimensional relativistic massive electrons in the background of a defect in the form of a pointlike magnetic vortex with arbitrary flux. This system is found to acquire, in addition to fermion number, also orbital angular momentum, spin, and induced magnetic flux, and we determine the functional dependence of the appropriate thermal averages and correlations on the temperature, the vortex flux, and the continuous parameter of the boundary condition at the location of the defect. We find that nonnegativeness of thermal quadratic fluctuations imposes a restriction on the admissible range of values of the boundary parameter. The long-standing problem of the adequate definition of total angular momentum for the system considered is resolved.Comment: 40 pages, 7 figures, journal version, minor correction

    Induced quantum numbers of a magnetic monopole at finite temperature

    Get PDF
    A Dirac electron field is quantized in the background of a Dirac magnetic monopole, and the phenomenon of induced quantum numbers in this system is analyzed. We show that, in addition to electric charge, also squares of orbital angular momentum, spin, and total angular momentum are induced. The functional dependence of these quantities on the temperature and the CP-violating vacuum angle is determined. Thermal quadratic fluctuations of charge and squared total angular momentum, as well as the correlation between them and their correlations with squared orbital angular momentum and squared spin, are examined. We find the conditions when charge and squared total angular momentum at zero temperature are sharp quantum observables rather than mere quantum averages.Comment: 24 pages, minor grammatical changes, journal versio

    Influence of quantized massive matter fields on the Casimir effect

    Full text link
    Charged massive matter fields of spin 0 and 1/2 are quantized in the presence of an external uniform magnetic field in a spatial region bounded by two parallel plates. The most general set of boundary conditions at the plates, that is required by mathematical consistency and the self-adjointness of the Hamiltonian operator, is employed. The vacuum fluctuations of the matter field in the case of the magnetic field orthogonal to the plates are analyzed, and it is shown that the pressure from the vacuum onto the plates is positive and independent of the boundary condition, as well as of the distance between the plates. Possibilities of the detection of this new-type Casimir effect are discussed.Comment: 14 pages, constants \hbar and cc are recovered in formula (40). arXiv admin note: text overlap with arXiv:1411.246

    Diffraction and quasiclassical limit of the Aharonov--Bohm effect

    Full text link
    Since the Aharonov-Bohm effect is the purely quantum effect that has no analogues in classical physics, its persistence in the quasiclassical limit seems to be hardly possible. Nevertheless, we show that the scattering Aharonov-Bohm effect does persist in the quasiclassical limit owing to the diffraction, i.e. the Fraunhofer diffraction in the case when space outside the enclosed magnetic flux is Euclidean, and the Fresnel diffraction in the case when the outer space is conical. Hence, the enclosed magnetic flux can serve as a gate for the propagation of short-wavelength, almost classical, particles. In the case of conical space, this quasiclassical effect which is in principle detectable depends on the particle spin.Comment: 12 pages, minor changes, references update

    Vacuum energy induced by an impenetrable flux tube of finite radius

    Full text link
    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. Our previous study in J. Phys. A: Vol.43, 175401 (2010) is extended to the case of smaller radius of the tube and larger distances from it. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.Comment: 11 pages, 8 figures, journal version, abstract extended. arXiv admin note: substantial text overlap with arXiv:0911.287
    corecore