40 research outputs found
The CERN laser-ion source
This paper describes the first results of a feasibility study undertaken at CERN to determine whether a laser-produced plasma can be used as a source of intense highly charged heavy ion beams. A variety of important measurements have been made, and the results are encouraging. Furthermore, a beam of highly charged light ions produced by the laser ion source has been accelerated successfully in a radio frequency quadrupole (RFQ) structur
Ion production by lasers using high-power densities in a near infrared region
Results are presented of experiments on ion production from Ta targets using a short pulse (350-600 ps in focus) illumination with focal power densities exceeding 1014 Wcm-2 at the wavelength of an iodine photodissociation laser (1.315 ÎĽm) and its harmonics. Strong evidence of the existence of tantalum ions with the charge state +45 near the target surface was obtained by X-ray spectroscopy methods. The particle diagnostics point to the existence of frozen high charge states (4 MeV) for the highest observed charge states. A tentative theoretical explanation of the observed anomalous charge state freezing phenomenon in the expanding plasma produced by a subnanosecond laser pulse is give
CERN PS laser ion source development
CERN, together with ITEP and TRINITI (Russia), is developing a CO2 laser ion source. The key design parameters are: 1.4 1010 ions of Pb25+ in a pulse of 5.5 ms, with a 4-rms emittance of 0.2 10-6 rad m, working at a repetition rate of 1 Hz. This device is considered as one candidate source for LHC heavy ion operation. The status of the laser development, the experimental set-up of the source consisting of the target area and its illumination, the plasma expansion area and extraction, beam transport and ion pre-acceleration by an RFQ, will be given