121 research outputs found

    Magnetic properties of the doped two-dimensional antiferromagnet

    Full text link
    The variety of the normal-state magnetic properties of cuprate high-Tc superconductors is interpreted based on the self-consistent solution of the self-energy equations for the two-dimensional t-J model. The observed variations of the spin correlation length with the hole concentration x, of the spin susceptibility with x and temperature T and the scaling of the static uniform susceptibility are well reproduced by the calculated results. The nonmonotonic temperature dependence of the Cu spin-lattice relaxation rate is connected with two competing tendencies in the low-frequency susceptibility: its temperature decrease due to the increasing spin gap and the growth of the susceptibility in this frequency region with the temperature broadening of the maximum in the susceptibility.Comment: 6 pages, 5 figures, Proc. Int. Conf. "Modern Problems of Superconductivity", 9-14 Sept. 2002, Yalta, Ukrain

    Two-dimensional t-J model at moderate doping

    Full text link
    Using the method which retains the rotation symmetry of spin components in the paramagnetic state and has no preset magnetic ordering, spectral and magnetic properties of the two-dimensional t-J model in the normal state are investigated for the ranges of hole concentrations 0 <= x <= 0.16 and temperatures 0.01t <= T <= 0.2t. The used hopping t and exchange J parameters of the model correspond to hole-doped cuprates. The obtained solutions are homogeneous which indicates that stripes and other types of phase separation are not connected with the strong electron correlations described by the model. A series of nearly equidistant maxima in the hole spectral function calculated for low T and x is connected with hole vibrations in the region of the perturbed short-range antiferromagnetic order. The hole spectrum has a pseudogap in the vicinity of (0,\pi) and (\pi,0). For x \approx 0.05 the shape of the hole Fermi surface is transformed from four small ellipses around (\pm\pi/2,\pm\pi/2) to two large rhombuses centered at (0,0) and (\pi,\pi). The calculated temperature and concentration dependencies of the spin correlation length and the magnetic susceptibility are close to those observed in cuprate perovskites. These results offer explanations for the observed scaling of the static uniform susceptibility and for the changes in the spin-lattice relaxation and spin-echo decay rates in terms of the temperature and doping variations in the spin excitation spectrum of the model.Comment: 12 pages, 14 figure

    Magnetic properties of the spin-1 two-dimensional J1J3J_1-J_3 Heisenberg model on a triangular lattice

    Full text link
    Motivated by the recent experiment in NiGa2_2S4_4, the spin-1 Heisenberg model on a triangular lattice with the ferromagnetic nearest- and antiferromagnetic third-nearest-neighbor exchange interactions, J1=(1p)JJ_1 = -(1-p)J and J3=pJ,J>0J_3 = pJ, J > 0, is studied in the range of the parameter 0p10 \leq p \leq 1. Mori's projection operator technique is used as a method, which retains the rotation symmetry of spin components and does not anticipate any magnetic ordering. For zero temperature several phase transitions are observed. At p0.2 p \approx 0.2 the ground state is transformed from the ferromagnetic order into a disordered state, which in its turn is changed to an antiferromagnetic long-range ordered state with the incommensurate ordering vector at p0.31p \approx 0.31. With growing pp the ordering vector moves along the line to the commensurate point Qc=(2π/3,0)Q_c = (2 \pi /3, 0), which is reached at p=1p = 1. The final state with the antiferromagnetic long-range order can be conceived as four interpenetrating sublattices with the 120deg120\deg spin structure on each of them. Obtained results offer a satisfactory explanation for the experimental data in NiGa2_2S4_4.Comment: 2 pages, 3 figure

    Magnetic incommensurability and fluctuating charge density waves in the repulsive Hubbard model

    Full text link
    Magnetic and charge susceptibilities of the two-dimensional repulsive Hubbard model are investigated applying a strong coupling diagram technique in which the expansion in powers of the hopping constants is used. For small lattices and high temperatures results are in agreement with Monte Carlo simulations. With the departure from half-filling xx the low-frequency magnetic susceptibility becomes incommensurate and the incommensurability parameter grows with xx. The incommensurability, its dependence on frequency and on xx resemble experimental results in lanthanum cuprates. Also for finite xx sharp maxima appear in the static charge susceptibility. The maxima are finite which points to the absence of the long-range charge ordering (static stripes). However, for x0.12x\approx 0.12 the maxima are located near the momenta (0,±π/2)(0,\pm\pi/2), (±π/2,0)(\pm\pi/2,0). In this case an interaction of carriers with tetragonal distortions can stabilize stripes with the wavelength of four lattice spacings, as observed in the low-temperature tetragonal phase of cuprates. As follows from the obtained results, the magnetic incommensurability is not a consequence of the stripes.Comment: 4 pages, 3 figures, manuscript for proceefings of LT2

    Spin dynamics in cuprate perovskites

    Get PDF
    Results obtained with the use of the t–J model of Cu–O planes and Mori’s projection operator formalism are compared with data of neutron scattering experiments in lanthanum and yttrium cuprates. This comparison allows us to interpret the intensive peak at the antiferromagnetic wave vector observed in yttrium cuprates as a manifestation of excitations of localized Cu spins. The high-frequency incommensurability detected both in lanthanum and yttrium cuprates is connected with the dispersion of these excitations, while the low-frequency incommensurability arises due to a dip in the spin-excitation damping at the antiferromagnetic wave vector. For moderate doping the dip stems from the weakness of the interaction between the spin excitations and holes near hot spots. It is conjectured that the dissimilarity of the susceptibility frequency dependencies in yttrium and lanthanum cuprates may be connected with different values of the hole bandwidth and damping in these crystals
    corecore