6 research outputs found

    On the effect of sulfite ions on the structural composition and ORR activity of Fe-N-C catalysts

    No full text
    Fe-N-C catalysts are the most promising group of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). This study focusses on two different porphyrin-based Fe-N-C catalysts and a Fe-N-C catalyst prepared from alternative precursors under S-addition. Catalysts are subjected to a wet-chemical poisoning treatment by sulfite ions . A mechanism for the deactivation process of the active sites is proposed. ORR activity is evaluated for the original catalysts (OC) and for the poisoned catalysts in 0.1 M H2SO4. In addition, the structural composition of the catalysts is identified by Mobauer spectroscopy. Our results show that the sulfite ions bound irreversible to the catalysts and the catalysts lose significant fractions of their ORR activity while in Mobauer spectroscopy a new doublet appears. Based on the results, possible models for the binding of the ambident sulfite ion to the FeN4 centers are discussed

    Influence of sulfur in the precursor mixture on the structural composition of Fe-N-C catalysts

    No full text
    Fe-N-C catalysts were prepared by a new synthesis protocol at 800 ∘C with subsequent acid leaching. The effect of sulfur was investigated by a systematic study in which the molar S/Fe ratio in the precursor was varied from 0.0 to 2.45. The obtained catalysts were evaluated for their ORR activity in 0.1 M H2 SO 4. In addition, the specific BET surface area was determined from N2 sorption measurements and structural characterization was made by Mößbauer spectroscopy. Catalysts contain FeN4 moieties and inorganic iron species. Structure activity correlation indicate a dominance of the ferrous low-spin FeN4 site for the ORR activity. This is in agreement with previous findings. In addition, the optimum in terms of ORR activity is in the same S/Me range as found for porphyrin-based catalysts. However, in contrast to previous conclusions of an avoidance of iron carbide formation by sulfur addition, a very high S/Fe ratio is required to obtain a catalyst free of iron carbide. Further work is required to identify the parameter that indeed enables inhibition of iron carbide formation

    Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C)

    No full text
    In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN4 site because of the presence of a second MeN4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications

    Active Site Identification in FeNC Catalysts and Their Assignment to the Oxygen Reduction Reaction Pathway by In Situ 57

    No full text
    FeNC catalysts are the most promising substitutes for Pt‐based catalysts for the oxygen reduction reaction in proton exchange fuel cells. However, it remains unclear which FeN4 moieties contribute to the reaction mechanism and in which way. The origin of this debate could lie in various preparation routes, and therefore the aim of this work is to identify whether the active site species differ in different preparation routes or not. To answer this question, three FeNC catalysts, related to the three main preparation routes, are prepared and thoroughly characterized. Three transitions A–C that are distinguished by a variation in the local environment of the deoxygenated state are defined. By in situ 57Fe Mössbauer spectroscopy, it can be shown that all three catalysts exhibit a common spectral change assigned to one of the transitions that constitutes the dominant contribution to the direct electroreduction of oxygen. Moreover, the change in selectivity can be attributed to the presence of a variation within additional species. Density functional theory calculations help to explain the observed trends and enable concrete suggestions on the nature of nitrogen coordination in the two FeN4 moieties involved in the oxygen reduction reaction of FeNC catalysts
    corecore