23 research outputs found

    The Effect of ACACB cis-Variants on Gene Expression and Metabolic Traits

    Get PDF
    Acetyl Coenzyme A carboxylase ÎČ (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults.ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs.ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10(-5), dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = -0.35, p = 0.0002).Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population

    Liver fat and lipid oxidation in humans.

    No full text
    BACKGROUND: Studies in animals show that changes in hepatic fatty acid oxidation alter liver fat content. Human data regarding whole-body and hepatic lipid oxidation are controversial and based on studies of only a few subjects. AIMS: We examined whether whole-body and hepatic lipid oxidation are altered in subjects with non-alcoholic fatty liver disease (NAFLD) compared with controls. METHODS: In vivo measurements of rates of substrate oxidation and insulin sensitivity (using the euglycaemic hyperinsulinaemic clamp technique in combination with indirect calorimetry and infusion of [3-(3)H]glucose) were performed in subjects with NAFLD [mean liver fat 14.0% (interquartile range 7.5-20.5%), n=29] and in control subjects [1.6% (1.0-3.0%), n=29]. Liver fat was measured using proton magnetic resonance spectroscopy. Plasma concentrations of 3-hydroxybutyrate (3-OHB) were measured as markers of hepatic lipid oxidation. RESULTS: In the basal state, substrate oxidation rates and serum 3-OHB concentrations were comparable in subjects with and without NAFLD. Plasma 3-OHB concentrations were similarly suppressed by insulin in both the groups. During the insulin infusion, whole-body lipid oxidation was inversely correlated with insulin-stimulated glucose disposal (r=-0.48, P<0.0001), which was lower in subjects with NAFLD [3.7+/-0.2 mg/(kg fat-free mass min)] than in the control subjects [5.0+/-0.3 mg/(kg fat-free mass min), P=0.0008]. CONCLUSIONS: Hepatic lipid oxidation is unchanged in NAFLD. Whole-body lipid oxidation is increased because of peripheral insulin resistance. These data imply that alterations in hepatic fatty acid oxidation do not contribute to liver fat content in humans
    corecore