37 research outputs found

    Highly Aromatic Flavan-3-ol Derivatives from Palaeotropical <i>Artocarpus lacucha</i> Buch.-Ham Possess Radical Scavenging and Antiproliferative Properties

    No full text
    Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL−1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment

    Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia

    No full text
    Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias

    Optical Genome Mapping Identifies Novel Recurrent Structural Alterations in Childhood ETV6::RUNX1+ and High Hyperdiploid Acute Lymphoblastic Leukemia

    No full text
    The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL

    Bubble growth analysis during subcooled boiling experiments on-board the international space station: Benchmark image analysis

    No full text
    This work compares four different image processing algorithms for the analysis of image data obtained during the Multiscale Boiling Experiment of ESA, executed on-board the International Space Station. Two separate experimental campaigns have been performed in 2019 and 2020, aiming to investigate boiling phenomena in microgravity, with and without the presence of shear flow and electric field. A heated substrate, at the bottom of the test cell, creates a temperature profile across the liquid bulk above it. A laser beam hits a designated microcavity at the middle of the substrate, to initiate nucleation of a single, isolated bubble. In the presence of shear flow or electric field forces, the bubble slides or detaches respectively, leaving the cavity free for the nucleation and growth of a new bubble. The growth of such a bubble within the prescribed temperature profile is studied for varying experimental conditions (i.e. pressure, heat flux, subcooling temperature) by capturing high speed, black and white video images. The presence of light reflections at random locations around the bubble contour vary with bubble size and population. This, combined with the refraction induced optical distortion of vertical image dimension close to the heater, make the accurate detection of bubbles contour a real challenge. Four research teams, namely the University of Pisa (UNIPI), the Institute of Fluid Mechanics of Toulouse (IMFT), the joint group of Aix Marseille University (AMU) and Kutateladze Institute of Thermophysics (IT), and the joined group of Aristotle University of Thessaloniki (AUTH), Technical University of Darmstadt (TUD) and Foundation of Research and Technology in Crete (FORTH), developed separate specialized algorithms to: a) detect bubble edges and b) use these edges to calculate basic bubble geometrical features, such as contact line diameter, bubble diameter and contact angles. These four different approaches diverge in complexity and concept. In the absence of reference measurements at microgravity conditions, measurements efficiency is evaluated based on the comparison of the estimated bubble geometrical features along with pertinent physical arguments. Results show that the efficiency of each approach varies with the nature of measurement. The studied benchmark dataset is published allowing other research groups to test further their own image processing algorithms
    corecore