387 research outputs found

    Angle-resolved photoemission study of untwinned PrBa2_2Cu3_3O7_7: undoped CuO2_2 plane and doped CuO3_3 chain

    Full text link
    We have performed an angle-resolved photoemission study on untwinned PrBa2_2Cu3_3O7_7, which has low resistivity but does not show superconductivity. We have observed a dispersive feature with a band maximum around (π\pi/2,π\pi/2), indicating that this band is derived from the undoped CuO2_2 plane. We have observed another dispersive band exhibiting one-dimensional character, which we attribute to signals from the doped CuO3_3 chain. The overall band dispersion of the one-dimensional band agrees with the prediction of tJt-J model calculation with parameters relevant to cuprates except that the intensity near the Fermi level is considerably suppressed in the experiment.Comment: 6 pages, 10 figure

    Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor

    Full text link
    We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results for the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure

    The relationship between posttreatment smile esthetics and the ABO Objective Grading System

    Get PDF
    ABSTRACT Objective: To evaluate the correlations between the components of the Objective Grading System developed by the American Board of Orthodontics (ABO) and smile esthetics. Materials and Methods: The clinical photographs of 48 orthodontically treated patients were rated by a panel of 25 experienced orthodontists (15 men and 10 women) and 20 parents of orthodontic patients (eight men and 12 women). One of the investigators, a director of the ABO, scored the posttreatment dental casts and panoramic radiographs of all patients according to the guidelines of the Objective Grading System. The relationship between the occlusal outcome and perceived smile attractiveness of the subjects were evaluated by a Pearson product-moment correlation. Logistic regression was used to determine whether the individual component or total combined scores of the ABO Grading System could predict whether a smile would be considered ''attractive'' or ''unattractive'' by the panel of raters. Results: Extremely weak relationships were found among all factors of the ABO Objective Grading System and perceived smile attractiveness (r values ranging from Ϫ0.11 to 0.14; P Ͼ .05). As derived from logistic regression equations, neither total scores nor individual components of the ABO Grading system could predict attractive or unattractive smiles. Conclusions: This study suggests that additional criteria might be incorporated into the assessment of overall orthodontic treatment outcomes, including variables evaluating the smile

    Interplane magnetic coupling effects in the multilattice compound Y_2Ba_4Cu_7O_{15}

    Full text link
    We investigate the interplane magnetic coupling of the multilattice compound Y_2Ba_4Cu_7O_{15} by means of a bilayer Hubbard model with inequivalent planes. We evaluate the spin response, effective interaction and the intra- and interplane spin-spin relaxation times within the fluctuation exchange approximation. We show that strong in-plane antiferromagnetic fluctuations are responsible for a magnetic coupling between the planes, which in turns leads to a tendency of the fluctuation in the two planes to equalize. This equalization effect grows whit increasing in-plane antiferromagnetic fluctuations, i. e., with decreasing temperature and decreasing doping, while it is completely absent when the in-layer correlation length becomes of the order of one lattice spacing. Our results provide a good qualitative description of NMR and NQR experiments in Y_2Ba_4Cu_7O_{15}.Comment: Final version, to appear. in Phys. Rev. B (Rapid Communications), sched. Jan. 9

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000

    Correlative In Situ Multichannel Imaging for Large-Area Monitoring of Morphology Formation in Solution-Processed Perovskite Layers

    Get PDF
    To scale up production of perovskite photovoltaics, state-of-the-art laboratory recipes and processes must be transferred to large-area coating and drying systems. The development of in situ monitoring methods that provide real-time feedback for process control is pivotal to overcome this challenge. Herein, correlative in situ multichannel imaging (IMI) obtaining reflectance, photoluminescence intensity, and central photoluminescence emission wavelength images on areas larger than 100 cm2 with subsecond temporal resolution using a simple, cost-effective setup is demonstrated. Installed on top of a drying channel with controllable laminar air flow and substrate temperature, IMI is shown to consistently monitor solution film drying, perovskite nucleation, and perovskite crystallization. If the processing parameters differ, IMI reveals characteristic changes in large-area perovskite formation dynamics already before the final annealing step. Moreover, when IMI is used to study >130 blade-coated devices processed at the same parameters, about 90% of low-performing devices contain coating inhomogeneities detected by IMI. The results demonstrate that IMI should be of value for real-time 2D monitoring and feedback control in industrial-scale, high-throughput fabrication such as roll-to-roll printing

    Direct Observation and Anisotropy of the Contribution of Gap nodes in the Low Temperature Specific Heat of YBa_2Cu_3O_7

    Full text link
    The specific heat due to line nodes in the superconducting gap of YBa2Cu3O7 has been obscured up to now by magnetic terms of extrinsic origin, even for high quality crystals. We report the specific heat of a new single crystal grown in a non-corrosive BaZrO3 crucible, for which paramagnetic terms are reduced to less than one spin-1/2 center for 20'000 Cu atoms. The contribution of line nodes shows up directly in the difference C(B,T) - C(0,T) at fixed temperatures (T < 5 K) as a function of the magnetic field parallel to the c-axis (B<=14 T). These data illustrate the smooth crossover from C propotional to T^2 at low fields to C propotional to TB^1/2 at high fields, and provide new values for gap parameters which are quantitatively consistent with tunneling spectroscopy and thermal conductivity in the framework of dx^2-y^2 pairing symmetry. Data for B along the nodal and antinodal directions in the ab-plane are also provided. The in-plane anisotropy predicted in the clean limit is not observed.Comment: 29 pages(using Revtex style), 14 postscript figures, submitted to Phys. Rev. B Content of the file changed after replacin

    Quasiparticle-quasiparticle Scattering in High Tc Superconductors

    Full text link
    The quasiparticle lifetime and the related transport relaxation times are the fundamental quantities which must be known in order to obtain a description of the transport properties of the high T_c superconductors. Studies of these quantities have been undertaken previously for the d-wave, high T_c superconductors for the case of temperature-independent elastic impurity scattering. However, much less is known about the temperature-dependent inelastic scattering. Here we give a detailed description of the characteristics of the temperature-dependent quasiparticle-quasiparticle scattering in d-wave superconductors, and find that this process gives a natural explanation of the rapid variation with temperature of the electrical transport relaxation rate.Comment: 4 page

    Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta

    Get PDF
    The temperature dependence of the c-axis optical conductivity \sigma(\omega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at \omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi

    Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates

    Full text link
    We propose a theoretical description of the superconducting state of under- to overdoped cuprates, based on the short coherence length of these materials and the associated strong pairing fluctuations. The calculated TcT_c and the zero temperature excitation gap Δ(0)\Delta(0), as a function of hole concentration xx, are in semi-quantitative agreement with experiment. Although the ratio Tc/Δ(0)T_c/\Delta(0) has a strong xx dependence, different from the universal BCS value, and Δ(T)\Delta(T) deviates significantly from the BCS prediction, we obtain, quite remarkably, quasi-universal behavior, for the normalized superfluid density ρs(T)/ρs(0)\rho_s(T)/\rho_s(0) and the Josephson critical current Ic(T)/Ic(0)I_c(T)/I_c(0), as a function of T/TcT/T_c. While experiments on ρs(T)\rho_s(T) are consistent with these results, future measurements on Ic(T)I_c(T) are needed to test this prediction.Comment: 4 pages, 3 figures, REVTeX, submitted to Phys. Rev. Let
    corecore