2,572 research outputs found

    Role of cross-links in bundle formation, phase separation and gelation of long filaments

    Full text link
    We predict the thermodynamic and structural behavior of solutions of long cross-linked filaments. We find that at the mean field level, the entropy of self-assembled junctions induces an effective attraction between the filaments that can result in a phase separation into a connected network, in equilibrium with a dilute phase. A connected network can also be formed in a non-thermodynamic transition upon increase of the chain, or cross link density, or with decreasing temperature. For rigid rods, at low temperatures, we predict a transition from an isotropic network, to anisotropic bundles of rods tightly bound by cross links, that is triggered by the interplay between the configurational entropy of the cross-link distribution among the rods, and the rotational and translational entropy of the rods.Comment: typos and graphics corrected; 6 pages 1 figur

    Molecular dynamics study of nanoparticle stability at liquid interfaces : effect of nanoparticle-solvent interaction and capillary waves

    Get PDF
    While the interaction of colloidal particles (sizes in excess of 100 nm) with liquid interfaces may be understood in terms of continuum models, which are grounded in macroscopic properties such as surface and line tensions, the behaviour of nanoparticles at liquid interfaces may be more complex. Recent simulations [D. L. Cheung and S. A. F. Bon, Phys. Rev. Lett. 102, 066103 (2009)] of nanoparticles at an idealised liquid-liquid interface showed that the nanoparticle-interface interaction range was larger than expected due, in part, to the action of thermal capillary waves. In this paper, molecular dynamics simulations of a Lennard-Jones nanoparticle in a binary Lennard-Jones mixture are used to confirm that these previous results hold for more realistic models. Furthermore by including attractive interactions between the nanoparticle and the solvent, it is found that the detachment energy decreases as the nanoparticle-solvent attraction increases. Comparison between the simulation results and recent theoretical predictions [H. Lehle and M. Oettel, J. Phys. Condens. Matter 20, 404224 (2008)] shows that for small particles the incorporation of capillary waves into the predicted effective nanoparticle-interface interaction improves agreement between simulation and theory

    Elastic Interactions of Cells

    Full text link
    Biological cells in soft materials can be modeled as anisotropic force contraction dipoles. The corresponding elastic interaction potentials are long-ranged (∼1/r3\sim 1/r^3 with distance rr) and depend sensitively on elastic constants, geometry and cellular orientations. On elastic substrates, the elastic interaction is similar to that of electric quadrupoles in two dimensions and for dense systems leads to aggregation with herringbone order on a cellular scale. Free and clamped surfaces of samples of finite size introduce attractive and repulsive corrections, respectively, which vary on the macroscopic scale. Our theory predicts cell reorientation on stretched elastic substrates.Comment: Revtex, 6 pages, 2 Postscript files included, to appear in Phys. Rev. Let

    Phase behavior and material properties of hollow nanoparticles

    Full text link
    Effective pair potentials for hollow nanoparticles like the ones made from carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of a hard core repulsion and a deep, but short-ranged, van der Waals attraction. We investigate them for single- and multi-walled nanoparticles and show that in both cases, in the limit of large radii the interaction range scales inversely with the radius, RR, while the well depth scales linearly with RR. We predict the values of the radius RR and the wall thickness hh at which the gas-liquid coexistence disappears from the phase diagram. We also discuss unusual material properties of the solid, which include a large heat of sublimation and a small surface energy.Comment: Revtex, 13 pages with 8 Postscript files included, submitted to Phys. Rev.

    Nematic order by elastic interactions and cellular rigidity sensing

    Full text link
    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early nematic alignment of short stress fibers in non-motile, adhered cells. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which orientational, nematic order of stress fibers depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.Comment: 12 pages, 4 figure

    Deformation and tribology of multi-walled hollow nanoparticles

    Full text link
    Multi-walled hollow nanoparticles made from tungsten disulphide (WS2_2) show exceptional tribological performance as additives to liquid lubricants due to effective transfer of low shear strength material onto the sliding surfaces. Using a scaling approach based on continuum elasticity theory for shells and pairwise summation of van der Waals interactions, we show that van der Waals interactions cause strong adhesion to the substrate which favors release of delaminated layers onto the surfaces. For large and thin nanoparticles, van der Waals adhesion can cause considerable deformation and subsequent delamination. For the thick WS2_2 nanoparticles, deformation due to van der Waals interactions remains small and the main mechanism for delamination is pressure which in fact leads to collapse beyond a critical value. We also discuss the effect of shear flow on deformation and rolling on the substrate.Comment: Latex, 13 pages with 3 Postscript figures included, to appear in Europhysics Letter

    Inter-filament Attractions Narrow the Length Distribution of Actin Filaments

    Full text link
    We show that the exponential length distribution that is typical of actin filaments under physiological conditions dramatically narrows in the presence of (i) crosslinker proteins (ii) polyvalent counterions or (iii) depletion mediated attractions. A simple theoretical model shows that in equilibrium, short-range attractions enhance the tendency of filaments to align parallel to each other, eventually leading to an increase in the average filament length and a decrease in the relative width of the distribution of filament lengths.Comment: 5 pages, 4 figure
    • …
    corecore