42 research outputs found

    Is the functional interaction between adenosine A2A receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus

    Get PDF
    The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders

    Catecholamine outflow from mouse and rat brain slice preparations evoked by nicotinic acetylcholine receptor activation and electrical field stimulation

    No full text
    Background and purpose: Mice with targeted deletions of neuronal nicotinic acetylcholine receptor (nAChR) subunit genes are valuable models to study nAChR function such as catecholamine outflow by presynaptic receptor activation. Contrary to the rat, our present knowledge on presynaptic nAChRs in mice primarily relies on observations made with synaptosomes. We have now used brain slices to investigate nicotine-induced catecholamine outflow in wild type (WT) and nAChR (b 2 and a 5 ) knockout mice for a comparison with rat brain slice preparations. Experimental approach: Brain slices from rat and mouse hippocampus, parieto-occipital neocortex, and corpus striatum were loaded with either [ 3 H]-noradrenaline or [ 3 H]-dopamine. We provoked catecholamine outflow by electrical field stimulation and nicotinic agonists. Key results: When set in relation to electrical field stimulation, nicotine-evoked catecholamine release was sizeable in the striatum but low in the neocortex of both rats and mice. [ 3 H]-noradrenaline outflow was, on the other hand, substantial in the rat but low in the mouse hippocampus. About 10% (or less) of nicotine-induced catecholamine release persisted in the presence of tetrodotoxin in all our preparations. Conclusions and implications: Targeted deletion of the b 2 subunit gene essentially abolished the effect of nicotine, indicating that this subunit is an essential constituent of nAChRs that indirectly (via action potentials) induce catecholamine release from hippocampal and striatal slices in mice. The impact of nAChRs in catecholaminergic projection areas differs between species and has thus to be considered when extrapolating results from animal models to human conditions
    corecore