742 research outputs found

    Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil

    Get PDF
    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil

    A general linear relaxometry model of R1 using imaging data.

    Get PDF
    PURPOSE: The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. METHODS: Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. RESULTS: The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. CONCLUSION: A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc

    Brain tissue properties differentiate between motor and limbic basal ganglia circuits

    Get PDF
    Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcom

    Reliability of multi-parameter mapping (MPM) in the cervical cord: A multi-center multi-vendor quantitative MRI study

    Get PDF
    MRI based multicenter studies which target neurological pathologies affecting the spinal cord and brain – including spinal cord injury (SCI) – require standardized acquisition protocols and image processing methods. We have optimized and applied a multi-parameter mapping (MPM) protocol that simultaneously covers the brain and the cervical cord within a traveling heads study across six clinical centers (Leutritz et al., 2020). The MPM protocol includes quantitative maps (magnetization transfer saturation (MT), proton density (PD), longitudinal (R1), and effective transverse (R2*) relaxation rates) sensitive to myelination, water content, iron concentration, and morphometric measures, such as cross-sectional cord area. Previously, we assessed the repeatability and reproducibility of the brain MPM data acquired in the five healthy participants who underwent two scan-rescans (Leutritz et al., 2020). This study focuses on the cervical cord MPM data derived from the same acquisitions to determine its repeatability and reproducibility in the cervical cord. MPM matrices of the cervical cord were generated and processed using the hMRI and the spinal cord toolbox. To determine reliability of the cervical MPM data, the intra-site (i.e., scan-rescan) coefficient of variation (CoV), inter-site CoV, and bias within region of interests (C1, C2 and C3 levels) were determined. The range of the mean intra- and inter-site CoV of MT, R1 and PD was between 2.5% and 12%, and between 1.1% and 4.0% for the morphometric measures. In conclusion, the cervical MPM data showed a high repeatability and reproducibility for key imaging biomarkers and hence can be employed as a standardized tool in multi-center studies, including clinical trials

    Reliability of quantitative multiparameter maps is high for magnetization transfer and proton density but attenuated for R1 and R2* in healthy young adults

    Get PDF
    We investigate the reliability of individual differences of four quantities measured by magnetic resonance imaging-based multiparameter mapping (MPM): magnetization transfer saturation (MT), proton density (PD), longitudinal relaxation rate (R1 ), and effective transverse relaxation rate (R2 *). Four MPM datasets, two on each of two consecutive days, were acquired in healthy young adults. On Day 1, no repositioning occurred and on Day 2, participants were repositioned between MPM datasets. Using intraclass correlation effect decomposition (ICED), we assessed the contributions of session-specific, day-specific, and residual sources of measurement error. For whole-brain gray and white matter, all four MPM parameters showed high reproducibility and high reliability, as indexed by the coefficient of variation (CoV) and the intraclass correlation (ICC). However, MT, PD, R1 , and R2 * differed markedly in the extent to which reliability varied across brain regions. MT and PD showed high reliability in almost all regions. In contrast, R1 and R2 * showed low reliability in some regions outside the basal ganglia, such that the sum of the measurement error estimates in our structural equation model was higher than estimates of between-person differences. In addition, in this sample of healthy young adults, the four MPM parameters showed very little variability over four measurements but differed in how well they could assess between-person differences. We conclude that R1 and R2 * might carry only limited person-specific information in some regions of the brain in healthy young adults, and, by implication, might be of restricted utility for studying associations to between-person differences in behavior in those regions

    Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging

    Get PDF
    Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury — the most common form of which is degenerative cervical myelopathy (DCM) — have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field

    Longitudinal changes of spinal cord grey and white matter following spinal cord injury

    Get PDF
    Objectives: Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. Methods: We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8-8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. Results: At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (-9.7%). Patients had decreased cervical fractional anisotropy (FA: -11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (-10.3%) and ventral columns (-9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. Conclusions: This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects

    Quantitative MRI maps of human neocortex explored using cell type-specific gene expression analysis

    Get PDF
    Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (R1{R_{1}}), effective transverse relaxation rate (R2{R_{2}}^{\ast }), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (R2{R_{2}}^{\ast } at 3T, R1{R_{1}} at 7T), endothelial cells (R1{R_{1}} and MTsat at 3T), microglia (R1{R_{1}} and MTsat at 3T, R1{R_{1}} at 7T), and oligodendrocytes and oligodendrocyte precursor cells (R1{R_{1}} at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types

    Longitudinal changes of spinal cord grey and white matter following spinal cord injury

    Get PDF
    Objectives: Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. // Methods: We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8–8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. // Results: At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (−9.7%). Patients had decreased cervical fractional anisotropy (FA: −11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (−10.3%) and ventral columns (−9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. // Conclusions: This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects

    New tissue priors for improved automated classification of subcortical brain structures on MRI.

    Get PDF
    Despite the constant improvement of algorithms for automated brain tissue classification, the accurate delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of automated brain tissue classification from T1w data, we have created new tissue probability maps for subcortical gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible compared to the one derived with currently available priors. We provide evidence that the improved delineation compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based morphometry in both healthy and diseased brains
    corecore