176 research outputs found

    Fractional Laplacian in Bounded Domains

    Full text link
    The fractional Laplacian operator, −(−△)α2-(-\triangle)^{\frac{\alpha}{2}}, appears in a wide class of physical systems, including L\'evy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalues spectrum are also obtained.Comment: 11 pages, 11 figure

    Entanglement Entropy in Random Quantum Spin-S Chains

    Full text link
    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin-S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach.Comment: 5 pages, 4 figure

    Numerical study on Schramm-Loewner Evolution in nonminimal conformal field theories

    Get PDF
    The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D critical statistical systems. Yet the application of SLE is well established for statistical systems described by quantum field theories satisfying only conformal invariance, the so called minimal conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual critical point for N=4 and N=5. These lattice models are described in the continuum limit by non-minimal CFTs where the role of a Z_N symmetry, in addition to the conformal one, should be taken into account. We provide numerical results on the fractal dimension of the interfaces which are SLE candidates for non-minimal CFTs. Our results are in excellent agreement with some recent theoretical predictions.Comment: 4 pages, 2 figures, v2: typos corrected, published versio

    Non-conformal asymptotic behavior of the time-dependent field-field correlators of 1D anyons

    Full text link
    The exact large time and distance behavior of the field-field correlators has been computed for one-dimensional impenetrable anyons at finite temperatures. The result reproduces known asymptotics for impenetrable bosons and free fermions in the appropriate limits of the statistics parameter. The obtained asymptotic behavior of the correlators is dominated by the singularity in the spectral density of the quasiparticle states at the bottom of the band, and differs from the predictions of the conformal field theory. One can argue, however, that the anyonic response to the low-energy probes is still determined by the conformal terms in the asymptotic expansion.Comment: 5 pages, RevTeX

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. II. Determinant Representation for the Dynamic Correlation Functions

    Full text link
    We have obtained a determinant representation for the time- and temperature-dependent field-field correlation function of the impenetrable Lieb-Liniger gas of anyons through direct summation of the form factors. In the static case, the obtained results are shown to be equivalent to those that follow from the anyonic generalization of Lenard's formula.Comment: 16 pages, RevTeX

    One-dimensional anyons with competing δ\delta-function and derivative δ\delta-function potentials

    Full text link
    We propose an exactly solvable model of one-dimensional anyons with competing δ\delta-function and derivative δ\delta-function interaction potentials. The Bethe ansatz equations are derived in terms of the NN-particle sector for the quantum anyonic field model of the generalized derivative nonlinear Schr\"{o}dinger equation. This more general anyon model exhibits richer physics than that of the recently studied one-dimensional model of δ\delta-function interacting anyons. We show that the anyonic signature is inextricably related to the velocities of the colliding particles and the pairwise dynamical interaction between particles.Comment: 9 pages, 2 figures, minor changes, references update

    Entanglement Entropy in the Calogero-Sutherland Model

    Full text link
    We investigate the entanglement entropy between two subsets of particles in the ground state of the Calogero-Sutherland model. By using the duality relations of the Jack symmetric polynomials, we obtain exact expressions for both the reduced density matrix and the entanglement entropy in the limit of an infinite number of particles traced out. From these results, we obtain an upper bound value of the entanglement entropy. This upper bound has a clear interpretation in terms of fractional exclusion statistics.Comment: 14 pages, 3figures, references adde

    Entanglement between particle partitions in itinerant many-particle states

    Full text link
    We review `particle partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum systems. We formulate the general structure of particle entanglement in many-fermion ground states, analogous to the `area law' for the more usually studied entanglement between spatial regions. Basic properties of particle entanglement are first elucidated by considering relatively simple itinerant models. We then review particle-partitioning entanglement in quantum states with more intricate physics, such as anyonic models and quantum Hall states.Comment: review, about 20 pages. Version 2 has minor revisions

    Critical interfaces of the Ashkin-Teller model at the parafermionic point

    Get PDF
    We present an extensive study of interfaces defined in the Z_4 spin lattice representation of the Ashkin-Teller (AT) model. In particular, we numerically compute the fractal dimensions of boundary and bulk interfaces at the Fateev-Zamolodchikov point. This point is a special point on the self-dual critical line of the AT model and it is described in the continuum limit by the Z_4 parafermionic theory. Extending on previous analytical and numerical studies [10,12], we point out the existence of three different values of fractal dimensions which characterize different kind of interfaces. We argue that this result may be related to the classification of primary operators of the parafermionic algebra. The scenario emerging from the studies presented here is expected to unveil general aspects of geometrical objects of critical AT model, and thus of c=1 critical theories in general.Comment: 15 pages, 3 figure

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. IV. Large Time and Distance Asymptotic Behavior of the Correlation Functions

    Full text link
    This work presents the derivation of the large time and distance asymptotic behavior of the field-field correlation functions of impenetrable one-dimensional anyons at finite temperature. In the appropriate limits of the statistics parameter, we recover the well-known results for impenetrable bosons and free fermions. In the low-temperature (usually expected to be the "conformal") limit, and for all values of the statistics parameter away from the bosonic point, the leading term in the correlator does not agree with the prediction of the conformal field theory, and is determined by the singularity of the density of the single-particle states at the bottom of the single-particle energy spectrum.Comment: 26 pages, RevTeX
    • …
    corecore